Recent Developments of the Nazarov Reaction · PDF fileRecent Developments of the Nazarov...

Post on 31-Jan-2018

226 views 1 download

Transcript of Recent Developments of the Nazarov Reaction · PDF fileRecent Developments of the Nazarov...

Recent Developments of the Nazarov Reaction

Banibrata GhoshMichigan State University

January 14, 2004

Directed Nazarov reactions

Asymmetric Nazarov reactions

Other recent variants of the Nazarov reaction

Outline

Introduction

Acid (protic or Lewis) induced cationic 4π conrotatoryelectrocyclic ring closure reaction of divinyl ketone to form cyclopentenones

aNazarov, I. N.; Zaretskaya, I. I. Bull. Acad. Sci. (USSR) 1942, 200-209.bBraude, E. A.; Coles, J. A. J. Chem. Soc. 1952, 1430-1433.cShoppee, C. W.; Lack, R. E. J. Chem. Soc. 1969, 1346-1348.

Carbocation intermediateb

Proceeds via α,α’-divinyl ketoneb

Intramolecular electrocyclization reactionc

Definition of the classical acid-catalyzed Nazarov reaction:

Named after the eminent Russian chemist I. N. Nazarov (1906–1957)

Discovered in 1942a

O

OCH3OH, H2O

HgSO4, H2SO4

O

Mechanism of Classical Nazarov Reaction

Smith, D. A.; Ulmer, C. W. J. Org. Chem. 1991, 56, 4444-4447.

OH

R

OH

R

OH

R

Comments:

1. Stabilization of the positive chargeon the terminal carbons increasesthe energy of activation and lowersthe heat of cyclization

2. Stabilization of the positive charge on the carbons β to the hydroxyl groupdecreases the energy of activation andincreases the heat of cyclization

3. Steric effects should also be considered

Transition state

Reactant cationProduct cation

O OH OH OH OH O

- H++ H+

- H-

4

CON(RDS)

π

Stereochemistry

Mechanism and stereochemistry are coupled

O

AcOH/H3PO4

50°C(Conrotatory)

benzene

254 nm(Disrotatory)

O

O

Duality of the Electrocyclization Pathway: Torquoselectivitya

O

R

R1

+

aThis term was coined by K. N. Houk.

Houk, K. N. In Strain and Its Implications in Organic Chemistry; de Meijere, A.; Blechert, S. Ed.; Kluwer Academic: Boston, 1989, Vol. 1, pp 25-37.

Origin: Steric or Electronic ???

O

R1

R

+

Clockwise

O

R1

RH

H

(Conrotatory)

O

R1

R

Anticlockwise(Conrotatory)

R1

R

H

H

O

Limitations of the Classical Nazarov Reaction

1. Lack of control over torquoselectivity

2. Lack of positional control of the double bond

3. Strong acidic media leading to some undesirable rearrangements

OH3C

R1

OH2C

R1

OH3C

R1

Motoyoshia, J.; Yazaki, T.; Hayashi, S. J. Org. Chem. 1991, 56, 735-740.

R

O

R

OH OH

RH

OH

R

OH

H

R

+ H+ - H+ + H+

OH

H

R

O

R

O

R

Directed Nazarov Reactions

Silicon-directed Nazarov reactions

Tin-directed Nazarov reactions

Fluorine-directed Nazarov reactions

OR1

R2

Silicon-Directed Nazarov Reactions

Denmark, S. E.; Jones, T. K. J. Am. Chem. Soc. 1982, 104, 2642-2645.

FeCl3

CH2Cl2 R2

R1

SiMe3

OFeCl2

Cl-

R2

R1

OFeCl2

- Me3SiCl

R2

R1

SiMe3

O

R2

R1 CHO

Me3Si

MgBr+

R2

R1

SiMe3

OH

R2

R1

SiMe3

O

1) THF, - 20 °C

2) NH4Cl

NiO2

Et2O, 0°C(71-94%)overall

a

R2

R1

O

(55-95%)

Advantages:

1. Controlled introduction of a double bond

2. Ready isomerization of the double bond to the most substituted position or its transformation to other functionalities if needed

Tin-Directed Nazarov Cyclization

Peel, M. R.; Johnson, C. R. Tetrahedron Lett. 1986, 27, 5947-5950.

R2

R1

E

O a

b

E = Electrofuge

OHC n-C5H11

OBn

SnBu3

On-C7H15

SnBu3

On-C7H15

n-C5H11 OHOBn

1) LDA, - 78°C

(83%)

2)

MsCl, Et3N, r.t. (85%)

SnBu3

On-C7H15

n-C5H11

O

OBn

1) BF3•OEt2 CH2Cl2, r.t.

(56%)

2) Basic Al2O3 CH2Cl2, r.t. 24 hOBn

Fluorine-Directed Nazarov Reaction

Ichikawa, J.; Miyazaki, S.; Fujiwara, M.; Minami, T. J. Org. Chem. 1995, 60, 2320-2321.

CF2

CH3n-BuO O

n-Bu

F

TMSOTf

r.t., 0.1- 0.2 h (73%)

CH2Cl2-HFIP (1:1)

CF2

n-BuO

CH3

TMS

FF

n-Bu

OTMS

H

- TMSF- TfOHTMSOTf

Note: HFIP = Hexafluoroisopropanol

Another Variant of Fluorine-Directed Nazarov Reaction

Ichikawa, J.; Fujiwara, M.; Okauchi, T.; Minami, T. Synlett 1998, 927-929.

OCH3

CH3

F3CO

CH3

F3C CH3TMSOTf

CH2Cl2-HFIP (1:1)r.t., 0.1 h

(86%)

OF3C R1

R2

TMS

R1

R2H

F3C

OTMS

- TMSF- TfOHTMSOTf

Conclusions on Directed-Nazarov Reactions

Regiocontrol is possible through directed-Nazarov reactions

Silicon and tin can function as a β-cation stabilizer and also as electrofuge to control the

introduction of the double bond of the cyclopentenone product in a position depending on the

placement of silicon or tin

Fluorine can function as a β-cation destabilizer and as a nucleofuge to control the introduction

of a double bond away from fluorine in the cyclopentenone product

Miesch, M.; Gross, L. M.; Neumann, M. F. Tetrahedron 1997, 53, 2111-2118.

OMe3Si

1) BF3•OEt2, C6H5Et, 125°C

2) TBAF, THF, 25°C

O

OHOR R = SiMe2Thexyl

Asymmetric Nazarov Reactions

Substrate control

Reagent control

O

H

H

H

O

H

H

H

Clockwise

Electronic Control of Torquoselectivity

Denmark, S. E.; Wallace, M. A.; Walker, C. B. J. Org. Chem. 1990, 55, 5543-5545.

(R)-(+)-1 (+)-2

(S)-(-)-1 (-)-2

Anticlockwise

OMe3Si

CH2Cl2- 50°CCH2Cl2

FeCl3

HH

OFeCl2Me3Si

anti SE'

H H

OFeCl2Me3Si

Cl-

(86%ee)

(88%ee)

OMe3Si

CH2Cl2- 50°CCH2Cl2

FeCl3

HH

OFeCl2Me3Si

antiSE'

H H

OFeCl2Me3Si

Cl-

Anti-SE' pathway in the electrocyclization Stereospecific reaction

Asymmetric Nazarov: Axial to Tetrahedral Chirality Transfer

Hu, H.; Smith, D.; Cramer, R. E.; Tius, M. A. J. Am.Chem. Soc. 1999, 121, 9895-9896.

N O

OMOM

O

H

n-Bu

Li

Me

OTBS+

1) THF, -78°C, 0.5 h

2) aq. work up

HO

Me

O

OTBS

H

HO

Me

O

HOTBS

H

H

+50%, 78%ee

9%, 64%ee

OH

R3

H

O OMeR1

R2

OH

OR1

H R3

H

favored

OH

H

O OMeR1

R2

disfavored

OH

OR1

R2 H

R3

R2

H

Clockwise

Anticlockwise

R3

OMe OMOM

n-BuH

TBSO

Chiral Auxiliary on Non-Stereogenic Allenes

OH

H

H

O OMeR1

R2HO

R1

O

HH

R2

nonselective conrotation

For synthesis of chiral cyclopentenone here we need an asymmetricenvironment!

Carbohydrate-Derived Auxiliaries

Harrington, P. E.; Tius, M. A. Org. Lett. 2000, 2, 2447-2450.

52%, 68%ee

71%, 82%ee

O

OMe

MeOMeO

OO

H

H

H

H

Me

1) n-BuLi, LiCl, THF - 78°C

2)

N

O

LiOOXc

HH

NO

O

R

O

OMe

MeOMeO

OMeH

O

S

H

H

H1) n-BuLi, LiCl, THF - 78°C

2)N

O

O

N

O

LiOOXc

HH

HCl, EtOH

- 78°C

O

HO

HCl, HFIP

0°C

O

HO

Stereospecific reaction

Summary of the Results

Harrington, P. E.; Tius, M. A. Org. Lett. 2000, 2, 2447-2450.

Entry Amide Product Yield (%) ee (%)

NO

i-Pr

O

NO

O

NO

t-Bu

O

NO

O

NO

Ph

O

MeO

O

HO

i-PrO

HO

t-BuO

HO

PhO

HO

OMe

45

67

71

65

56

1

2

3

4

5

O

HO 41

67

57

42

<5

(61)

(52)

(61)

(58)

(69)

(66)

(68)

(73)

(67)

(63)

O

OMe

MeOMeO

OO

H

Li

H

H

Me

NO

OR1

R2

O

HO

R1

R2

(HCl, HFIP, 0°C)

2) HCl, EtOH, - 78°Cor

1)

Possible Reason: Mechanistic Insight

Harrington, P. E.; Tius, M. A. Org. Lett. 2000, 2, 2447-2450.

N

O

LiOOXc

Me

HH

H+

MeO

OXcMe

HHMeO

O

H+ OXcMe

HHMeO

OXcMe

HHMeO

O H

O HO

HO

Me

OMe

OOMe

OMeOMe

MeO

O

HO

Me

OMe

OOMe

OMeOMe

MeO

Xc = Auxiliary

Origin of Stereoselection!!!

Direction of conrotation is governed by the anomeric carbon atom and that might involve the interaction of pyran oxygen atom

Harrington, P. E.; Tius, M. A. J. Am. Chem. Soc. 2001, 123, 8509-8514.

R

R

Xc = auxiliary

O

HO

HCl, EtOH, - 78°C 61%, 61%ee

HCl, HFIP, 0°C 48%, 81%ee

O

OMe

MeOMeO

O

H

H

H

H

1) n-BuLi, LiCl THF, -78°C

2)

N

O

LiOOXc

HH

O

MeOMeO

Me O

H

HH H

OMe

1) n-BuLi, LiCl THF, -78°C

2)

N

O

LiOOXc

HH

NO

O

NO

O

Limitations of the Carbohydrate-Derived Auxiliary Approach

Nucleophilicity of the lithiated allenes was unsatisfactory

Erosion of the %ee took place upon scale up of the reaction

Preparation of carbohydrate-derived auxiliary was tedious on large scale

Camphor-Derived Auxiliary

Harrington, P. E.; Murai, T.; Chu, C.; Tius, M. A. J. Am. Chem. Soc. 2002, 124, 10091-10100.

OOLi

HH

NO

R1

R2

O

2) HCl, HFIP/TFE (1:1) - 78°C

O

HO

R1

R2

1)

Entry Amide Product Yield (%) ee (%)

NO

O

NO

O

NO

t-Bu

O

NO

TBS

n-C5H11

O

NO

F

Ph

O

O

HO

O

HO

O

HO

t-Bu

O

HO

F Ph

O

HO

TBS n-C5H11

1

2

3

4

5

67

69

84

55

62

65

74

87

58

76

Auxiliary on Stereogenic Allenes: Matched and Mismatched Cases!!!

OOH

RH

auxiliary and allenefavor the same conrotation

higher %ee

auxiliary and allenefavor opposite conrotation

lower %ee

Matched caseMismatched case

1. If auxiliary directs the conrotation, two allene enantiomers would give products with samestereogenic center β to the carbonyl group

2. If allene directs the conrotation, different allene enantiomers would give enantiomericallydifferent products

Outcome:

An Example Where Auxiliary Controls the Conrotation

Harrington, P. E.; Murai, T.; Chu, C.; Tius, M. A. J. Am. Chem. Soc. 2002, 124, 10091-10100.

67%, 79%ee

O

HO

CH3

CH3

67%, 71%ee

Matched

Mismatched

+ 1

4:3 mixture

1) n-BuLi, THF, - 78°C

2)N

O

H3CO

3) HCl, HFIP/TFE, -78°C

O

H

O δ

OH

CH3

PhH3C

H

δ

O

H

O δ

OH

CH3

PhH

CH3

δ

OO

OO

H

CH3

H

H

H3C

H

1) n-BuLi, THF, - 78°C

2)N

O

H3CO

3) HCl, HFIP/TFE, -78°C

1

2

65%ee from pure 2

An Example Where Allene Controls the Conrotation

Harrington, P. E.; Murai, T.; Chu, C.; Tius, M. A. J. Am. Chem. Soc. 2002, 124, 10091-10100.

Matched

Mismatched

O

HO

H3CCH3

O

HO

H3CCH3

56%, 94%ee 3%, 92%ee

+

O

HO

H3CCH3

O

HO

H3CCH3

33%, 72%ee 15%, 61%ee

+

OOH

H

1) n-BuLi, THF, - 78°C

NO

O

2)

3) HCl, HFIP/TFE

OO

H

H

1) n-BuLi, THF, - 78°C

NO

O

2)

3) HCl, HFIP/TFE

O

H

O δ

OH

CH3

CH3H

O

H

O δOH

CH3

CH3

δ

δ

H

N

O

SEM

Application of Chiral Auxiliary Approach: Synthesis of Roseophilin

Harrington, P. E.; Tius, M. A. J. Am. Chem. Soc. 2001, 123, 8509-8514.

O

N

Cl

H

OMeN O

HO

N

O

OOOLi

HH

+

Some Other Auxiliaries

Kerr, D. J.; Metje, C.; Flynn, B. L. Chem. Commun. 2003, 1380-1381.

Pridgen, L. N. et al. Synlett 1999, 1612-1614.

O

O O

O

Xc

PrO

H

N O

O

i-Pr

Xc =

Ph

O

NO

OO

Phkinetic product

Ph

O

NO

OO

Phthermodynamic product

N O

O

Ph

O O

Ph

MeSO3H

- 78 to 0°C (77%)

MeSO3H

r.t.(76%)

MeSO3H (5 equiv)

CH2Cl2, 0°C(88%, 70%de)

OPrO

Xc

O

OO

Ligand *, CuBr2AgSbF6, CH2Cl2, r.t.

* Ligand = 3 when R3 = OEt = 4 when R3 = NEt2

Reagent Controlled Nazarov: Catalytic Asymmetric Nazarov Cyclization

Aggarwal, V. K.; Belfield, A. J. Org. Lett. 2003, 5, 5075-5078.

R2

R3R1

Ph

O O

N N

CO O

t-But-Bu

N N

O O

i-Pri-Pr

N

4

3

Ligands

Me Me

OR1

Ph

O

R3

R2

R

R

Entry Substrate R1 R2 R3 Yield (%) ee (%)

1

2

3

4

5

6

1a

1b

1c

1d

1e

1f

Me

Ph

Me

Ph

Me

Ph

Ph

Ph

Me

Me

Ph

Ph

OEt

OEt

OEt

OEt

NEt2

NEt2

42

96

27

86

56

56

78

86

01

35

87

85

Origin of the Stereoselection: Stereochemical Model

Aggarwal, V. K.; Belfield. A. J. Org. Lett. 2003, 5, 5075-5078.

O

OEt

O

Ph

R1

R2

OO

R1

H

R2

Ph

Et2NCu

NN

O

O

H t-Bu

Ht-Bu O

NEt2

O

Ph

R1

R2

O

O

R2

Ph

R1

CuN

Oi-Pr

N

O N

i-PrEtO

Steric push from i-Pr group

Catalytic Asymmetric Nazarov Cyclization: Another Example

Liang, G.; Gradl, S. N.; Trauner, D. Org. Lett, 2003, 5, 4931-4934.

OO

NO

N N

O

Ph Ph

Sc(OTf )3

( 20 mol %)

THF

53%, 61%ee

OO

H

H

Probably Sc is binding to both oxygens forming a distorted complex structure and predisposing the orbital lobes to favor

clockwise conrotation

Conclusions on Asymmetric Nazarov Reaction

Both substrate and reagent controlled asymmetric induction is possible

Chiral auxiliaries induce asymmetry by favoring one mode of conrotation

Chiral catalysts distort the divinyl ketone to favor one conrotation over the other

Other Recent Variants of the Nazarov Reaction

Polarized Nazarov reactions

Pd(II)-catalyzed Nazarov reactions

Intercepted Nazarov reactions

Retro-Nazarov reactions

Polarized Nazarov Reaction

He, W.; Sun, X.; Frontier, A. J. J. Am. Chem. Soc. 2003, 125, 14278-14279.

OO

CO2Me

R

OO

CO2Me

R

Cu(OTf)2, (2 mol%) Cl(CH2)2Cl (0.06 M) 25°C

Entry Ketone R Time Yield (%)

1

2

3

4

5

3a

3b

3c

3d

3e

2,4,6-trimethoxyphenyl

4-methoxyphenyl

3-methoxyphenyl

phenyl

cyclohexyl

5 min

3.5 h

48 h

108 h

240 h

> 99

99

96

99

< 50

OE

R2

D

R1

Lewis AcidED

R1 R2

OLA

OH

ED

R1 R2

Cyclization

Vinyl Electrophile

Vinyl Nucleophile

δ− δ+

D = Electron donating groupE = Electron withdrawing group

Role of Vinyl Nucleophile and Vinyl Electrophile

Cu(OTf)2 (2 mol%) Cl(CH2)2Cl (0.06 M)A =

He, W.; Sun, X.; Frontier, A. J. J. Am. Chem. Soc. 2003, 125, 14278-14279.

OCO2Me

TMP

OCO2Me

TMP

A

40°C0.25 h(86%)

OO

H OO

A

55°C0.5 h(60%)

OH

DecompositionA

65°C4 h

TMP = 2,4,6-trimethoxyphenyl

OO

LAregioselective elimination

R

CO2Me

OLA

nonselective elimination

R2

R1R4

R3

Palladium(II) Catalyzed Nazarov Reaction

O

Ph

OEt + H Pd OAcL

L

Bee, C.; Leclerc, E.; Tius, M. A. Org. Lett. 2003, 5, 4927-4930.

OOEtH3C

Ph

O

OEt

Ph

OH

OH3C

Ph

PdCl2(MeCN)2 (1 mol%)

Pd(OAc)2(20 mol%)

acetone (H2O) r.t., 1 d, (91%)

DMSO80°C, 1 d, (50%)

O

OEt

H3C

Ph

PdX

XL

O

OEt

H3C

Ph PdX2L

OH3C

Ph

slow

H2OO

OH3C

Ph

OEt

PdLLX

O

O

H3C

Ph

Pd

X = Cl H2O

X = OAc

OH

OH3C

Ph

L2PdCl2 HCl EtOH+ + +

O

H3C

Ph

OEt

PdLLAcO

HOAc

ClL

L

+X-+

Intercepted Nazarov Reactions: Intramolecular

Mechanistic Rationale:

Bender, J. A.; Blize, A. E.; Browder, C. C.; Giese, S.; West, F. G. J. Org. Chem. 1998, 63, 2430-2431.

Me

O

Et

H

H

MeOBF3

EtMeH

Me

Me

EtH

MeOBF3

Me

HO O

Et

H

H

MeH3O+

OEt

Me

Me

Me

HO O

Et

H

H H

MeBF3•OEt2, CH2Cl2

-78°C, r.t., H2O(73%)

OEt

Me

Me

H

OEt

Me

Me

H

BF3

BF3

Intercepted Nazarov reactions help to conserve the stereocenters formed from the electrocyclic

ring closure

OBF3

Me H

Et Me

OH

oxyallylicintermediate

Domino-Nazarov Reaction

Bender, J. A.; Arif, A. M.; West, F. G. J. Am. Chem. Soc. 1999, 121, 7443-7444.

Me

Me

Et

MeO

Me

Me

Et

OTiCl4

MeTiCl4

H

MePh(CH2)2

MeMe

Et

EtH

MeMe

H Me

TiCl4, CH2Cl2 - 78°C (73%)

+

O

O

EtH

Me

MeMe

PhCH2CH2 H

Me

OCl4Ti H EtMe

Me

OTiCl4

- TiCl4

Intermolecular Trapping of Nazarov Intermediate: Reductive Nazarov Cyclization

A

B

H3C

H3C

F3BOPh

H

HEt3Si H

Path A

Path B

Giese, S.; West, F. G.; Tetrahedron 2000, 56, 10221-10228.

H3C

H3C

F3BOPh

H

H

H

H3C

H3CF3BO

Ph

H

H

H

Ph

HH3C

H

Ph

HH

H3C

δ

δ

δ

δ

δ

δ

O

Me

Ph

Me

Ph

BF3O

Me

PhPh

Me1.1 equiv. BF3•OEt

10 equiv. Et3SiHH2O

O

Ph

H

Ph

BF2

Et3SiH

Et3SiF

MeMe

O

Ph

Me

Ph

Me

O

Ph

Me

Ph

SiEt3

Me

+

(44%)

(54%)

H2O

[4+3] Capture of Oxyallyl Intermediate: Another Intermolecular Case

Wang, Y.; Schill, B. D.; Arif, A. M.; West, F. G. Org. Lett, 2003, 5, 2747-2750.

Me MePh Ph

O

Me

Me

Ph

PhMe

MeOBF3

Me MePh Ph

O

not seen

Me

Me

Ph

Ph

MeOBF3

Me

Me MePh Ph

O

not seen

MeO

Me

Ph

Me

Ph

Me BF3•OEt2

- 25°C, 2.5 hCH2Cl2(20%)

Me MePh Ph

O+

Me

Stepwise cycloaddition?

Retro-Nazarov Reaction

Probable Mechanism !!!

Harmata, M.; Lee, D. R. J. Am. Chem. Soc. 2002, 124, 14328-14329.

Retro-Nazarov: misnomer?

TFEO Ot-Bu

O

Ph+

O

t-BuO PhOCH2CF3

TFEO Ot-Bu

O

PhH+

(65%) (9%)

O

Br

Pht-BuO

TEA, TFE

reflux

O

Br

t-BuO

Ph2CuLi

O

t-BuO Ph(66%)

O

Br

t-BuO Ph

O

Br

t-BuO Ph

Et3NH

O-

t-BuO Ph

O

t-BuO Ph

RETRO

NAZAROV

- Br-

Conclusions

Classical acid catalyzed Nazarov cyclization reaction is a 4π conrotatoryelectrocyclic ring closure reaction of divinyl ketones

Directed Nazarov reactions attempt to overcome the problems related to regiocontrol of the double bond in the product

Asymmetric Nazarov reactions provide a means to selectively favor one modeof conrotation in the electrocyclic ring closure

Polarization of the precursor divinyl ketone gives the Nazarov product with regiocontrol under milder conditions

Trapping of the oxyallylic intermediate of the reaction can be done both intra and intermolecularly and that helps to conserve the stereocenters created by the electrocyclic ring closure

Dr. Robert Maleczka

Edith

Jill

Ron

Andrea

Feng

Kyoungsoo

Kim

Sanjit

Jill

Manish

Vijay

Manasi

Mahesh

All other friends!

Dr. Wagner

Dr. Tepe

Dr. Jackson

Dr. Reusch

Acknowledgements