Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann...

Post on 11-Oct-2020

1 views 0 download

Transcript of Production of αωdiols from Biomass - Nc State University...Michael Tspastsis, Ilja Siepmann...

Catalytic Processes for Production of α,ω-diols

from Lignocellulosic Biomass

Chris Marshall

Michael Tspastsis,

Ilja Siepmann

Support from Bioenergy

Technology Office (BETO)

High value infrastructure compatible commodity chemicals from biomass

3Source: Lux Research, Bio-based Materials and Chemical Intelligence Service, www.luxresearchinc.com

Volume (Million MT/yr.)

Pri

ce (

$/

MT

)

1,6-Hexanediol

(~130,000 MT/yr)

Pri

ce (

$/

MM

BT

U)

10

20

30

140

150

0

Natural gas

Crude oil ($50/bbl)

Biomass ($80/ton)

1,6-hexanediol

($4,400/ton)

Gasoline ($2.5/gal)

Source: ICIS, IEA

There are several (aqueous-phase) acid catalyzed reactions in biomass conversion

• Hydrolysis

• Isomerization1

• Dehydration2

• Rehydration1) Y. Roman-Leshkov, M. Moliner, J.A. Labinger, and M.E. Davis, Angewandte Chemie International Edition 49 (2010) 8954-8957.

2) Y. Roman-Leshkov, J.N. Chheda, and J.A. Dumesic, Science 312 (2006) 1933-1937.4

5

Low product selectivity is a key challenge in biomass conversion

Proposed reaction scheme

6

Activity of Acid sites are influenced by Solvent due to Solvation Effects

0 20 40 60 80 100

0

25

50

75

100

125

150

175

200

Based on total detectable products

Based on HMF

0.70.9

5

32

816

52

Turn

over

frequency / h

r-1

Initial water content in solvent / vol %

190

T=170 °C

P=1000 psig

Cellulose=5wt%

Acid= 5 mM H2SO4

Solvent = THF

R. Weingarten, A Rodriguez-Beuerman, F Cai, JS Luterbacher, DM Alonso, JA Dumesic, GW Huber, Selective

Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents; ChemCatChem; (2014) 8 2229-2234.

T=170 °C

P=1000 psig

Cellulose=3 gr

Acid=5 mM H2SO4

Reaction vol.=60 mL

High HMF yields are obtained in polar aprotic solvents

0 10 20 30 40 50 60

0

2

4

6

8

10

12

14

16

HM

F c

arb

on y

ield

(%

)

time (min.)

Water

THF

GVL

Ethyl Acetate

Acetone

Ethanol

Polar

aprotic

solvents

R. Weingarten, A Rodriguez-Beuerman, F Cai, JS Luterbacher, DM Alonso, JA Dumesic, GW Huber, Selective

Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents; ChemCatChem; (2014) 8 2229-2234.

M A Mellmer, C Sener, JMR Gallo, JS Luterbachher, DM Alonso, JA Dumesic, Solvent Effects in Acid Catalyzed

Biomass Conversion Reactions,, Ang Chemie (2014) 53 11872-11875.

Presence of water changes the product distribution

9

Reaction Conditions: 1 wt% cellulose, 7.5 mM H2SO4, 190 0C 1000 psig He, 60 mL total volume

Source: Cao, F.; Schwartz, T. J.; McClelland, D. J.; Krishna, S. H.; Dumesic, J. A.; Huber, G. W., “Dehydration of cellulose to

levoglucosenone using polar aprotic solvents” Energy & Environmental Science 2015, 8 (6), 1808-1815.

Pure THF2.7% water, bal. THF11.6% water, bal. THF

0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)0 50 100 150 200 250 300

0

5

10

15

20

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

20

40

60

80

Yie

ld (

% C

arb

on

)

Time (min)0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)0 50 100 150 200 250 300

0

5

10

15

20

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

20

40

60

80

Yie

ld (

% C

arb

on

)

Time (min)0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

10

20

30

40

Yie

ld (

% C

arb

on

)

Time (min)0 50 100 150 200 250 300

0

5

10

15

20

Yie

ld (

% C

arb

on

)

Time (min)

0 50 100 150 200 250 300

0

20

40

60

80

Yie

ld (

% C

arb

on

)

Time (min)

LGO HMF

GlucoseLGA

SOLVENT:

Levoglucosenone (LGO)• Chiral carbon

Sometimes referred to as “the next HMF”

10F Cao, TJ Schwartz, D McClelland, S Krishna, JA Dumesic, GW Huber, Dehydration of

Cellulose to Levoglucosenone using Polar Aprotic Solvents, EES, (2015) 4 1808-1885.

Levoglucosenone (LGO)• Chiral carbon

• Double bond conjugated with a ketone

Sometimes referred to as “the next HMF”

11F Cao, TJ Schwartz, D McClelland, S Krishna, JA Dumesic, GW Huber, Dehydration of

Cellulose to Levoglucosenone using Polar Aprotic Solvents, EES, (2015) 4 1808-1885.

Levoglucosenone (LGO)

• Chiral carbon

• Double bond conjugated with a ketone

• Protected aldehyde

Sometimes referred to as “the next HMF”

12F Cao, TJ Schwartz, D McClelland, S Krishna, JA Dumesic, GW Huber, Dehydration of

Cellulose to Levoglucosenone using Polar Aprotic Solvents, EES, (2015) 4 1808-1885.

Levoglucosenone (LGO)

• Chiral carbon

• Double bond conjugated with a ketone

• Protected aldehyde

• Two protected hydroxyl groups

Sometimes referred to as “the next HMF”

13F Cao, TJ Schwartz, D McClelland, S Krishna, JA Dumesic, GW Huber, Dehydration of

Cellulose to Levoglucosenone using Polar Aprotic Solvents, EES, (2015) 4 1808-1885.

Reaction Pathway for Dehydration of Cellulose in Polar Aprotic Solvents

14

LGO is hydrogenated to levoglucosanol over a metal catalyst (Pd/Al2O3)

S.H. Krishna, D.J. McClelland, Q.R. Rashke, J.A. Dumesic, G.W. Huber, “Catalytic hydrogenation of levoglucosenone to value-added chemicals”.

Submitted.

• High yields of Cyrene or Lgol achievable using monometallic catalysts

• Excess of exo-Lgol produced over endo-Lgol

Selective Hydrogenolysis of Cyclic Ethers: Literature

16

Bifunctional catalyst with a reducible metal and an oxophilic promoter;

Low temperatures

Sources: [1] Chia et al., Journal of the American Chemical Society, 2011, 133, 12675-12689

[2] Chen et al., ChemCatChem, 2010, 2, 547-555

Reactant Transition state Product

Tetrahydrofurfuryl

alcohol

Hydride transfer

creates a stable

oxocarbenium ion

97% selectivity to

α,ω-diols

Proposed reaction pathway in literature

with a RhRe/C catalyst through formation

of a stable oxocarbenium ion[1]

THP-2M

2-methyltetrahydropyran (2-MTHP)

1-hexanol1,6-HDO (>95% selectivity)

1,2-HDO

2-hexanol

C-C cracking products

Proposed reaction scheme

for THP-2M hydrogenolysis

with a IrRe/SiO2 catalyst[2]

Synergy between the reducible metal and oxophilicpromoter is important

17

† VXC = Vulcan XC-72, a carbon black by Cabot Corporation

‡ other products include over-hydrogenolysis and C-C cracking products

Additional reaction conditions and details: Feedstock: 5% aq. THP-2M feedstock, Catalyst:Feedstock (g/g) = 2:7,

Temperature = 120 oC, Pressure = 34 bar H2, Time = 4 h

Batch reactor activity data by Chia et al.[1]:

THP-2M 1,6-HDO

CatalystConversion

(%)

Rate

(μmol·g-1·min-1)

1,6-HDO

selectivity (%)

Byproducts

selectivity (%)

Rh/VXC†

(4 wt% Rh)3 4 44

1,2-hexanediol (11%),

1-hexanol (3%), others‡ (42%)

Re/VXC(3.6 wt% Re)

No reaction - - -

RhRe/VXC(4 wt% Rh, 3.6 wt% Re)

28 90 97 1-hexanols (3%),

Source: [1] Chia et al., Journal of the American Chemical Society, 2011, 133, 12675-12689

0 10 20 30 40 50 60 70 800

20

40

60

80

100

0

20

40

60

80

100

High selectivity to 1,6-HDO is achievable using RhRe/VXC bifunctional catalysts

18

Byproducts include small amounts of 1-hexanol, 2-MTHP, 1-pentanol

Reaction conditions for continuous reaction: 5% aq. THP-2M, catalyst:

RhRe/VXC, WHSV = 1.44 h-1, 120 oC, 34 bar H2, 40 sccm H2

Time (h)

TH

P-2

M c

on

vers

ion

(%

)

1,6-H

DO

sele

cti

vity

(%

)

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

THP-2M solution

through HPLC pump

Hydrogen

Reacto

rG

as-

Liq

uid

sep

ara

tor

To back-pressure regulator

High selectivity to 1,6-HDO is achievable using RhRe/VXC bifunctional catalysts

19

Reaction conditions: 5% aq. THP-2M (initial reaction volume = 50 mL), catalyst: RhRe/VXC,

catalyst:feedstock (g/g) = 1:7, 120 oC, 34 bar H2.

Byproducts include small amounts of 1-hexanol, 2-MTHP, 1-pentanol with RhRe/VXC catalyst

0 10 20 30 40 50 60 70 800

20

40

60

80

100

0

20

40

60

80

100

Time (h)

TH

P-2

M c

on

vers

ion

(%

)

1,6-H

DO

sele

cti

vity

(%

)

RhRe/VXC

RhRe/NDC

0 10 20 30 40 50 60 70 800

20

40

60

80

100

0

20

40

60

80

100

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Carbon Blacks vs. Activated Carbons

20

Hydrocarbons

Carbon black

Gas-phase pyrolysis

Formation of carbon blacks

(vapor phase)

Low-rank coals,

wood, thermosetting

polymers

Glassy carbon

Thermal decomposition by charring

Activated

carbons (chars)

Activation

1. Selective gasification

2. Chemical treatment

3. …

Formation of activated carbons

(solid phase)

Source: L. R. Radovic, in Carbon Materials for Catalysis, John Wiley & Sons, Inc., 2008, pp. 1-44

Carbon supports discussed here:

Vulcan XC-72, Cabot Corp., carbon black Norit Darco 12X40, Cabot Corp., activated carbon&

VXC NDC

Characterization of Carbon Supports

21

Carbon support NDC VXC

Type of carbon support Activated (acid washed) Carbon black

BET surface area (m2·g-1) 671 240

50 500100 1000

0.000

0.005

0.010

0.015

0.020

Po

re v

olu

me

(cm

3 g

-1 Å

-1)

Pore width (Å)

NDC

VXC

Pore size distribution

Pore width (Å)

Po

re v

olu

me (

cm

3g

-1Å

-1)

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

400

500

Qu

an

tity

ad

sorb

ed (

cm3 g

-1 S

TP

)

Relative pressure (P/Po)

Adsorption

Desorption

VXC

NDC

Nitrogen adsorption isotherm

Qu

an

tity

ad

sorb

ed

(cm

3g

-1)

Relative pressure (P/Po)

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

NDC has more surface oxygen present

22

Surface elemental composition (mol %)

Carbon C O S Si Na Al

VXC 99.4 0.4 0.2 - - -

NDC 88.8 8.8 - 1.9 0.2 0.3

Water vapor adsorption isotherm

Water adsorption capacity of VXC = 1.2 mmol·g-1

Water adsorption capacity of NDC = 17.5 mmol·g-1

XPS analysis of carbon

supports

0.0 0.2 0.4 0.6 0.8 1.00

4

8

12

16

20

Adsorption

Desorption

0

1

2

3

4

Qu

an

tity

ad

sorb

ed

(m

mo

lg

-1)

Qu

an

tity

ad

sorb

ed

(m

mo

lg

-1)

Relative pressure (P/Po)

VXC

NDC

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Higher density of oxidized species on NDC than VXC – more

sites for interaction with metal and metal precursors

Sources: [1] Figueiredo et.al., Carbon, 1999, 37, 1379-1389

23

Abundance shown is relative to C=C stretch (the only signal due to

a non-oxygenated bond)

Band

Position

(cm-1)

AssignmentRelative abundance

NDC VXC

477C-CO deformation of cyclic

ketone3.40 0

792

C-O-C stretch of aromatic

cyclic anhydride or O-H bend

of carboxylic acid

1.69 0

1025Acid Anhydride C-O-C

stretch7.92 0

1055 Phenol O-H bend 0.26 0

1119 Ether C-O-C stretch 13.07 0.16

1173 Phenol C-OH stretch 0.80 0.42

1215 Lactone C=O stretch 2.05 0.51

1280 Carb. Acid C=O stretch 0.56 1.79

1350Carboxyl Carbonate C=O

stretch0.05 2.41

1586C=C stretch (conjugated

aromatic)1.00 1.00

3473O-H stretch of water or

carboxylic acid1.99 0.96

Support characterization with DRIFTS

4000 3500 1750 1500 1250 1000 750 500 250

Wavenumber (cm-1)

Sig

nal

(a.u

.)

NDC

VXC

[2] Fanning et al., Carbon, 1993, 31, 721–730

[3] Collins et al., Carbon, 2013, 57, 174–183

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Characterization of Bimetallic Catalysts

† Reaction conditions for batch reactions: 120 oC, 34 bar H2, 5% aq. THP-2M (Initial reaction volume = 25 mL),

catalyst: RhRe/C, catalyst:feedstock (g/g) = 1:7, Reaction time = 4 h

24

Catalyst Rh/NDC RhRe/NDC Rh/VXC RhRe/VXC

Rh loading (wt%) 4.1 4.0 4.1 4.0

Rh:Re atomic ratio - 1:0.5 - 1:0.5

Rh atom density

(atoms/nm2)0.36 0.36 1.02 1.00

CO uptake (μmol/g) 204 232 130 76

CO:Rh (mol:mol) 0.51 0.60 0.32 0.19

Rate of THP-2M [†]

hydrogenolysis

(μmol/g/min)

1 76

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

X-ray Absorption Near Edge Structure

10.52 10.53 10.54 10.55 10.560

1

2

3

4

Re foil

ReO2

Re2O7

RhRe/NDC

reduced at 200 oC

RhRe/VXC

reduced at 200 oC

Energy (keV)

No

rmali

zed

ab

sorp

tio

n

CatalystTreatment prior

to scan in He

XANES fit for Re edge

Re(VII) Re(IV) Re(0)

Re/NDC 200 0C reduction 0.298 0.702 -

Re/VXC 200 0C reduction 0.358 0.642 -

Re catalysts RhRe catalysts

25

CatalystTreatment prior

to scan in He

XANES fit for Re edge

Re(VII) Re(IV) Re(0)

RhRe/NDC 200 0C reduction - 0.678 0.322

RhRe/VXC 200 0C reduction - 0.610 0.390

10.52 10.53 10.54 10.55 10.560

1

2

3

4

Energy (keV)

No

rmali

zed

ab

sorp

tio

n

Re foil

ReO2

Re2O7Re/NDC

reduced at 200 oC

Re/VXC

reduced at 200 oC

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

Scanning Transmission Electron Microscopy (STEM)

26

RhRe/NDC

RhRe/VXC

0 1 2 3 4 5 6 7 8 9 10 150.0

0.1

0.2

0.3

0.4

0.5

Particle size (nm)

Fra

cti

on

Average = 1.98±0.73 nm

793 particles analyzed

0 1 2 3 4 5 6 7 8 9 10 150.0

0.2

0.4

0.6

0.8

1.0

Particle size (nm)

Fra

cti

on

Average = 1.61±0.61 nm

868 particles analyzed

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

STEM-EDS images for catalyst nanoparticles

27

Map

Drift ref.

Rh

Re

Map

Drift ref.

Rh

Re

RhRe/NDC

RhRe/VXC

Avg. particle size : 1.61±0.61 nm

Avg. particle size : 1.98±0.73 nm

Karanjkar et al.; “Effect of carbon support on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-

methanol” RSC Catalysis Science and Technology, in press.

STEM-EDS indicates segregation of Re species in NDC

28

Re content (atomic %)

Nu

mb

er

of

part

icle

s

0 10 20 30 40 50 60 70 80 90 1000

5

10

15

61.3 atomic% Re

Re content (atomic %)

Nu

mb

er

of

part

icle

s

0 10 20 30 40 50 60 70 80 90 1000

5

10

36.7 atomic% Re

Theoretical ICP EDS

Re content

(% atomic)33.3% 35.5% 61.3%

Rh:Re

(mol:mol)1:0.5 1:0.55 1:1.58

Theoretical ICP EDS

Re content

(% atomic)33.3% 33.8% 36.7%

Rh:Re

(mol:mol)1:0.5 1:0.51 1:0.58

RhRe/NDC

RhRe/VXC

Note: The distribution considers composition of ~60 particles analyzed with EDS

29

Note: Schematic is for visualization purposes only!

RhRe/NDC RhRe/VXC

• Nanoparticles with relatively uniform

composition

• Anchoring of metals/metal-precursors

is relatively absent because of low

surface oxygen

• Formation of small Rh particles (<1

nm) may be avoided because of smaller

surface area of support

• Nanoparticles with segrated particle

composition

• Many small particles (<1 nm) rich in

Rh are present that evade detection in

STEM

• Many Re only particles also present and

larger particles are rich in Re

• Higher surface oxygen content may

restrict mobility of metals/metal-

precursors resulting in segregation of

Rh and Re

100% Re

Tiny Rh

particles

(<1 nm)

65% Re

~33% Re

Conclusion

• New pathways for production of high value oxygenated commodity chemicals from biomass

• Cellulose can be converted into LGO and HMF in high yields in polar aprotic solvents

• LGO is a promising platform molecule• LGO and HMF hydrogenated into THFDM which

then undergoes hydrogenolysis into 1,6 hexanediol

• 1,5 pentanediol can be produced from biomass without expensive RhRe catalysts

30

31