Overview: Rotational Kinetic Energy

Post on 05-Apr-2022

3 views 0 download

Transcript of Overview: Rotational Kinetic Energy

11/16/2021

1

Rotational Motion Overview (Chapter 8, 9, 10)Chapters

[Pure] Rotational

Motion (8.1-4, 8.6-7):

Rotation about a fixed

Axis

Angular Kinematic Variables ( Τ¦πœƒ, πœ”, Ԧ𝛼) – Axis of Rotation (8.1-2)

Torque 𝝉 (8.3)

Moment of Inertia 𝐼 (8.4-5) and Rotational Kinetic Energy

Conservation of Energy including rotational motion (8.6)

Conservation of Angular Momentum 𝐿 (8.7)

Rolling Motion (9.1-9.5)

= rotation + translation

Understanding Rolling Motions (9.1-9.3)

Conservation of Energy: rotation and translation (9.5)

Newton’s 2nd Law: rotation and translation: acceleration (9.4)

Equilibrium (10.1-10.3) Σ Ԧ𝐹 = 0 and ΣԦ𝜏 = 0 (10.1, 10.2)

Equilibrium Lab, Applications (10.3)

Overview: Rotational Kinetic Energy

β€’ Use conservation of energy to solve rotational motion problems.β€’ This requires knowing the Kinetic Energy in rotational motion.β€’ Moment of Inertia.β€’ Moment of Inertia depends on the axis of rotation.

β€’ Moment of Inertial for rigid bodies.β€’ Moment of inertia for a rodβ€’ Moment of inertial for a rectangleβ€’ Moment of inertia for a cylinderβ€’ Moment of inertia for a sphere

β€’ Example Problems along the way

1

4

11/16/2021

2

𝐿 = 1.0 π‘š, 𝑀 = 1 π‘˜π‘”.

Rotational KE for rod of length 𝐿, mass 𝑀.

From the Rotational KE, we can find the Moment of Inertia about the axis of rotation.

5

7

11/16/2021

3

𝐿

π‘š1

π‘š2

π‘š2

𝑣 = ?

β€’ A rod with mass π‘š1 = 4 π‘˜π‘” and length 𝐿 = 1.0 π‘š is hung horizontally on the wall with the pivot at the centre of the rod.

β€’ A second mass π‘š2 = 0.2 π‘˜π‘” is attached to one end.

β€’ Starting horizontally at rest, the rod rotates due to the added mass. What is the speed of the mass when it reaches the bottom?

π‘š1

Overview: Rotational Kinetic Energy

β€’ Use conservation of energy to solve rotational motion problems.β€’ This requires knowing the Kinetic Energy in rotational motion.β€’ Moment of Inertia.β€’ Moment of Inertia depends on the axis of rotation.

β€’ Moment of Inertial for rigid bodies.β€’ Moment of inertia for a rodβ€’ Moment of inertial for a rectangleβ€’ Moment of inertia for a cylinderβ€’ Moment of inertia for a sphere

β€’ Example Problems along the way

9

11

11/16/2021

4

Moment of inertia not in table.

β€’ A rectangle has sides π‘Ž = 0.25 π‘š,𝑏 = 0.75 π‘š with mass 𝑀 = 2.0 π‘˜π‘”.

β€’ Given that the moment of inertia of a

rectangle is 1

12𝑀(π‘Ž2 + 𝑏2) about the

centre of a rectangle, what are the moment of inertia at point A?

Γ— Γ— A

𝑏

π‘Ž

12

13

11/16/2021

5

Overview: Rotational Kinetic Energy

β€’ Use conservation of energy to solve rotational motion problems.β€’ This requires knowing the Kinetic Energy in rotational motion.β€’ Moment of Inertia.β€’ Moment of Inertia depends on the axis of rotation.

β€’ Moment of Inertial for rigid bodies.β€’ Moment of inertia for a rodβ€’ Moment of inertial for a rectangleβ€’ Moment of inertia for a cylinderβ€’ Moment of inertia for a sphere

β€’ Example Problems along the way

What is the moment of inertial of this thin walled hollow cylinder (mass 𝑀, radius 𝑅, length 𝐿)?

πΌπ‘Žπ‘₯𝑖𝑠 = π‘š1π‘Ÿ12 +π‘š2π‘Ÿ2

2 +π‘š3π‘Ÿ32 + …

A. 𝑀𝑅2

B.1

2𝑀𝑅2

C.1

4𝑀𝑅2

D.1

8𝑀𝑅2

E. 1

12𝑀𝑅2

14

16

11/16/2021

6

π‘š1

π‘š2

Rotational KE example problem

β€’ Two masses, π‘š1 = 2 π‘˜π‘”,π‘š2 = 1 π‘˜π‘” are connected by a string with negligible weight.

β€’ The string is then put around a pulley with mass 𝑀 = 6 π‘˜π‘” and radius 𝑅 = 0.5 π‘š.

β€’ The pulley is made like a bicycle wheel where the mass is concentrated on the rim only.

β€’ Initially, mass π‘š1is at rest at height β„Ž = 2 π‘šwhile π‘š2 is resting on the ground.

β€’ When released, what is the speed of π‘š1 just before it hits the ground?

𝑀 = 6 π‘˜π‘”π‘… = 0.5 π‘š

π‘š1 = 2 π‘˜π‘”

π‘š2

= 1 π‘˜π‘”

π‘š1

π‘š2

Massless wheel for the moment (𝑀 = 0)

β€’ Δ𝐾𝐸 =1

2π‘š1𝑣

2 +1

2π‘š2𝑣

2

β€’ What is βˆ’Ξ”π‘ƒπΈ = 𝑃𝐸𝑖 βˆ’ 𝑃𝐸𝑓?

A. π‘š1π‘”β„Ž

B. π‘š2π‘”β„Ž

C. π‘š1π‘”β„Ž +π‘š2π‘”β„Ž

D. π‘š1π‘”β„Ž βˆ’π‘š2π‘”β„Ž

Conservation of Energy Δ𝐾𝐸 = βˆ’Ξ”π‘ƒπΈπ‘€ = 0

π‘š1 = 2 π‘˜π‘”

π‘š2

= 1 π‘˜π‘”

18

19

11/16/2021

7

π‘š1

π‘š2

Massless wheel for the moment (𝑀 = 0)

β€’ Δ𝐾𝐸 =1

2π‘š1𝑣

2 +1

2π‘š2𝑣

2

β€’ βˆ’Ξ”π‘ƒπΈ = 𝑃𝐸𝑖 βˆ’ 𝑃𝐸𝑓 = π‘š1π‘”β„Ž βˆ’π‘š2π‘”β„Ž

Conservation of Energy Δ𝐾𝐸 = βˆ’Ξ”π‘ƒπΈ

1

2π‘š1𝑣

2 +1

2π‘š2𝑣

2 =π‘š1π‘”β„Ž βˆ’π‘š2π‘”β„Ž

𝑀 = 0

π‘š1 = 2 π‘˜π‘”

π‘š2

= 1 π‘˜π‘”

π‘š1

π‘š2

Massless wheel for the moment (𝑀 = 6 π‘˜π‘”)

β€’ βˆ’Ξ”π‘ƒπΈ = 𝑃𝐸𝑖 βˆ’ 𝑃𝐸𝑓 = π‘š1π‘”β„Ž βˆ’π‘š2π‘”β„Ž

β€’ Δ𝐾𝐸 =1

2π‘š1𝑣

2 +1

2π‘š2𝑣

2 + Ξ”πΎπΈπ‘Ÿπ‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›

Conservation of Energy Δ𝐾𝐸 = βˆ’Ξ”π‘ƒπΈπ‘€ = 6 π‘˜π‘”π‘… = 0.5 π‘š

π‘š1 = 2 π‘˜π‘”

π‘š2

= 1 π‘˜π‘”

20

21

11/16/2021

8

What is the moment of inertial of this solid cylinder (mass 𝑀, radius 𝑅, length 𝐿)?

𝐼 = 𝑀𝑅2

𝐼 = ?

Replace the pulley in the previous problem with a solid disk. What is the moment of inertial 𝐼 of a solid disk (mass 𝑀, radius 𝑅) ?

π‘š1

π‘š2

π‘š1

π‘š2

Previously 𝐼 =𝑀𝑅2

23

25

11/16/2021

9

Overview: Rotational Kinetic Energy

β€’ Use conservation of energy to solve rotational motion problems.β€’ This requires knowing the Kinetic Energy in rotational motion.β€’ Moment of Inertia.β€’ Moment of Inertia depends on the axis of rotation.

β€’ Moment of Inertial for rigid bodies.β€’ Moment of inertia for a rodβ€’ Moment of inertial for a rectangleβ€’ Moment of inertia for a cylinderβ€’ Moment of inertia for a sphere

β€’ Example Problems along the way

28

29

11/16/2021

10

Torque: concepts (magnitudes only) and mathematics (vectors)

30

31

11/16/2021

11

1. Torque – Concepts (magnitudes only)

We need a torque to start rotating the objectLinear Angular

KE 1

2π‘šπ‘£2

1

2πΌπœ”2

displacement π‘₯ πœƒ

velocity 𝑣 πœ”

acceleration π‘Ž 𝛼

Inertia π‘š 𝐼

Force Torque

𝐹 𝜏

32

33

11/16/2021

12

Definition of torque 𝜏

π‘Ÿπ‘

π‘Ÿπ‘Ž

Same force Ԧ𝐹 applied at two different locations yield different torques

Easier to rotate the nut when the force is applied at π‘Ÿπ‘ than at π‘Ÿπ‘Ž

Applied force here is perpendicular to π‘Ÿπ‘ and π‘Ÿπ‘.

Magnitudes only:

Definition of torque 𝜏

Τ¦π‘Ÿ

πœƒΤ¦πΉ

The radial component 𝐹 cos πœƒ does not rotate the wrench/nut. Only the tangential component of the force 𝐹 sin πœƒ does rotate it.

𝐹 sin πœƒ

𝐹 cos πœƒ

When Ԧ𝐹 is not perpendicular to Τ¦π‘Ÿ

34

35

11/16/2021

13

Definition of torque 𝜏

Τ¦π‘Ÿ

πœƒΤ¦πΉ

πœƒ

Keep the full magnitude of

vector Ԧ𝐹, but take the perpendicular component (π‘ŸβŠ₯) of the displacement vector Τ¦π‘Ÿ.

We need a torque to start rotating the objectLinear Angular

KE 1

2π‘šπ‘£2

1

2πΌπœ”2

π‘₯ πœƒ

𝑣 πœ”

π‘Ž 𝛼

π‘š 𝐼

Force Torque

𝐹

Newton’s Law

𝐹 = π‘šπ‘Ž

Τ¦π‘Ÿ

πœƒ Ԧ𝐹

𝐹βŠ₯ = 𝐹 sin πœƒ

36

37

11/16/2021

14

We need a torque to start rotating the object

1. Tangential acceleration π‘ŽβŠ₯

π‘ŽβŠ₯ = π‘Ÿπ›Ό

𝛼 is the angular accel.

2. 𝐹βŠ₯ = π‘šπ‘ŽβŠ₯

Starting with 𝜏 = π‘ŸπΉβŠ₯ which is correct?

A. 𝜏 = π‘šπ›Ό

B. 𝜏 = π‘šπ‘Ÿπ›Ό

C. 𝜏 = π‘šπ‘Ÿ2𝛼

Τ¦π‘Ÿ

πœƒΤ¦πΉ

𝐹βŠ₯ = 𝐹 sin πœƒ

π‘ŽβŠ₯

𝜢

π‘š

We need a torque to start rotating the objectLinear Angular

KE 1

2π‘šπ‘£2

1

2πΌπœ”2

π‘₯ πœƒ

𝑣 πœ”

π‘Ž 𝛼

π‘š 𝐼

Force Torque

𝐹

Newton’s Law

𝐹 = π‘šπ‘Ž

Τ¦π‘Ÿ

πœƒ Ԧ𝐹

𝐹βŠ₯ = 𝐹 sin πœƒ

𝜢

39

41

11/16/2021

15

2. Torque – Vector Math

From 𝜏 = 𝐼𝛼 to Ԧ𝜏 = 𝐼 Ԧ𝛼

We need a torque to start rotating the objectLinear Angular

KE 1

2π‘šπ‘£2

1

2πΌπœ”2

π‘₯ πœƒ

𝑣 πœ”

π‘Ž 𝛼

π‘š 𝐼

Force Torque

𝐹

Newton’s Law

𝐹 = π‘šπ‘Ž

Τ¦π‘Ÿ

πœƒ Ԧ𝐹

𝐹βŠ₯ = 𝐹 sin πœƒ

𝜢

42

44

11/16/2021

16

πœƒ

π‘₯

𝑦

𝑧

β€’ Consider 1D rotation

β€’ Displacement πœƒ

β€’ Ang. Velocity Ο‰ = Ξ”πœƒ/Δ𝑑

β€’ Ang. Accel. 𝛼 = Ξ”πœ”/Δ𝑑

β€’ object rotates about

Rotational Motion

β€’ Consider 1D rotation

β€’ Displacement πœƒ

β€’ Ang. Velocity Ο‰ = Ξ”πœƒ/Δ𝑑

β€’ Ang. Accel. 𝛼 =Ξ”πœ”

Δ𝑑

β€’ object rotates about +𝑧 axis

β€’ They are all in the direction of the axis of rotation: in this example,

β€’ Τ¦πœƒ = πœƒπ‘˜

β€’ πœ” = πœ”π‘˜

β€’ Ԧ𝛼 = π›Όπ‘˜

Rotational Motion

πœƒ

π‘₯

𝑦

𝑧

Vector Ԧ𝜏 = 𝐼 Ԧ𝛼Magnitude: 𝜏 = 𝐼𝛼

48

50

11/16/2021

17

We need a torque to start rotating the objectLinear Angular

KE 1

2π‘šπ‘£2

1

2πΌπœ”2

π‘₯ πœƒ

𝑣 πœ”

π‘Ž 𝛼

π‘š 𝐼

Force Torque

𝐹 𝜏 = π‘ŸπΉ sinπœƒ

Newton’s Law

Ԧ𝐹 = π‘š Τ¦π‘Ž

Τ¦π‘Ÿ

πœƒ Ԧ𝐹

𝐹βŠ₯ = 𝐹 sin πœƒ

𝜢

We need a torque to start rotating the object

Τ¦π‘Ÿπœƒ Ԧ𝐹

𝐹βŠ₯ = 𝐹 sin πœƒ

Recall

Axis of rotation:+𝒛

Torque, angular accel, velocity, displacement are all in the + 𝒛 direction.

𝝉 = 𝒓𝑭 𝐬𝐒𝐧𝜽 can be rewritten as

π‘₯

𝑦

𝑧𝝉 = π‘ŸπΉβŠ₯ = π’“π‘­π¬π’π§πœ½

52

53

11/16/2021

18

We need a torque to start rotating the objectLinear Angular

KE 1

2π‘šπ‘£2

1

2πΌπœ”2

π‘₯ πœƒ

𝑣 πœ”

π‘Ž 𝛼

π‘š 𝐼

Force Torque

Ԧ𝐹

Newton’s Law

Ԧ𝐹 = π‘š Τ¦π‘Ž

Τ¦π‘Ÿ

πœƒ Ԧ𝐹

𝐹βŠ₯ = 𝐹 sin πœƒ

55