On the Stokes semigroup in some non-Helmholtz domainOn the Stokes semigroup in some non-Helmholtz...

Post on 10-Aug-2020

11 views 0 download

Transcript of On the Stokes semigroup in some non-Helmholtz domainOn the Stokes semigroup in some non-Helmholtz...

On the Stokes semigroup in some non-Helmholtz domains

Yoshikazu Giga University of Tokyo

June 2014

Joint work with Ken Abe (Nagoya U.), Katharina Schade (TU Darmstadt) and Takuya Suzuki (U. Tokyo)

Contents 1. Introduction

2. Bogovskiโ€™s example and main results

3. Neumann problems with singular data

2

1. Introduction Stokes system: ๐‘ฃ๐‘ก โˆ’ ฮ”๐‘ฃ + ๐›ป๐‘ž = 0, div ๐‘ฃ = 0 in ฮฉ ร— (0,๐‘‡)

B.C. ๐‘ฃ = 0 on ๐œ•ฮฉ I.C. ๐‘ฃ|๐‘ก=0 = ๐‘ฃ0 in ฮฉ

Here ฮฉ is a uniformly ๐ถ3-domain in ๐‘๐‘›(๐‘› โ‰ฅ 2) ๐‘ฃ : unknown velocity field ๐‘ž : unknown pressure field ๐‘ฃ0 : a given initial velocity

3

Problem 1. Is the solution operator (called the Stokes semigroup) ๐‘† ๐‘ก :๐‘ฃ0 โ†ฆ ๐‘ฃ(โ‹…, ๐‘ก) an analytic semigroup in ๐ฟโˆž-type spaces? In other words, is there ๐ถ > 0 s.t.

๐‘‘๐‘‘๐‘ก๐‘† ๐‘ก ๐‘“

๐‘‹โ‰ค๐ถ๐‘ก๐‘“ ๐‘‹, ๐‘ก โˆˆ 0,1 , ๐‘“ โˆˆ ๐‘‹

where ๐‘‹ is an ๐ฟโˆž-type Banach space? Analyticity is a notion of regularizing effect appeared in parabolic problems in an abstract level.

4

Definition of analyticity Definition 1 (semigroup). Let ๐‘† = ๐‘† ๐‘ก ๐‘ก>0 be a family of bounded linear operators in a Banach space ๐‘‹. In other words, ๐‘† ๐‘ก ๐‘ก>0 โˆˆ ๐ฟ(๐‘‹). We say that ๐‘† is a semigroup in ๐‘‹ if (i) (semigroup property) ๐‘† ๐‘ก ๐‘†(๐œ) = ๐‘†(๐‘ก + ๐œ)

for ๐‘ก, ๐œ > 0 (ii) (strong continuity) ๐‘† ๐‘ก ๐‘“ โ†’ ๐‘† ๐‘ก0 ๐‘“ in ๐‘‹ as ๐‘ก โ†’ ๐‘ก0 for all ๐‘ก0 > 0, ๐‘“ โˆˆ ๐‘‹ (iii) (non degeneracy) ๐‘† ๐‘ก ๐‘“ = 0 for all ๐‘ก > 0

implies ๐‘“ = 0. (iv) (boundedness) ๐‘† ๐‘ก ๐‘œ๐‘œ โ‰ค ๐ถโˆƒ for ๐‘ก โˆˆ (0,1)

5

Definition 2 (non ๐ถ0 analytic semigroup). Let ๐‘† be a semigroup in ๐‘‹. We say that ๐‘† is analytic if ๐ถ > 0โˆƒ such that

๐‘‘๐‘‘๐‘ก๐‘† ๐‘ก

๐‘œ๐‘œโ‰ค๐ถ๐‘ก

, ๐‘ก โˆˆ 0,1 .

See a book [ABHN] W. Arendt, Ch. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Birkhรคuser (2011).

6

Definition 3 (๐ถ0-semigroup). A semigroup ๐‘† is called ๐‘ช๐ŸŽ-semigroup if ๐‘† ๐‘ก ๐‘“ โ†’ ๐‘“ as ๐‘ก โ†“ 0 for all ๐‘“ โˆˆ ๐‘‹.

Remark. The name of analyticity stems from the fact that ๐‘† = ๐‘† ๐‘ก ๐‘กโ‰ฅ0 can be extended as a holomorphic function to a sectorial region of ๐‘ก i.e. arg ๐‘ก < ๐œƒ with some ๐œƒ โˆˆ (0,๐œ‹/2).

7

Problem 2. Is the solution operator ๐‘† ๐‘ก an analytic semigroup in ๐ฟ๐‘Ÿ-type spaces? This problem has a long history. V. A. Solonnilov โ€™77, Y. G. โ€™81, โ€ฆโ€ฆ

A classical problem

8

Heat semigroup (Gauss โ€“ Weierstrass semigroup)

๐ป ๐‘ก ๐‘“ ๐‘ฅ = ๐‘’๐‘กฮ”๐‘“ = ๐บ๐‘ก โˆ— ๐‘“

= ๏ฟฝ ๐บ๐‘ก ๐‘ฅ โˆ’ ๐‘ฆ ๐‘“ ๐‘ฆ ๐‘‘๐‘ฆ๐‘๐‘›

๐บ๐‘ก ๐‘ฅ =1

4๐œ‹๐‘ก ๐‘›/2 exp(โˆ’ ๐‘ฅ 2/4๐‘ก)

A simple example

9

Proposition 1. (i) The family ๐ป = ๐ป ๐‘ก ๐‘ก>0 is a non ๐ถ0-analytic semigroup in ๐ฟโˆž(๐‘๐‘›)

(and also in ๐ต๐ถ(๐‘๐‘›)) but a ๐ถ0-analytic semigroup in ๐ต๐ต๐ถ(๐‘๐‘›)

(and also in ๐ถ0(๐‘๐‘›)) (ii) The family ๐ป is a ๐ถ0-analytic semigroup in

๐ฟ๐‘Ÿ(๐‘๐‘›) for all 1 โ‰ค ๐‘Ÿ < โˆž.

๐ต๐ถ ๐‘๐‘› = ๐ถ ๐‘๐‘› โˆฉ ๐ฟโˆž ๐‘๐‘› ๐ต๐ต๐ถ ๐‘๐‘›

= ๐‘“ โˆˆ ๐ต๐ถ ๐‘๐‘› ๐‘“: uniformly continuous ๐ถ0 ๐‘๐‘› = ๐ฟโˆž-closure of ๐ถ๐‘โˆž ๐‘๐‘›

= ๐‘“ โˆˆ ๐ถ ๐‘๐‘› lim๐‘ฅ โ†’โˆž

๐‘“ ๐‘ฅ = 0 10

๐ถ๐‘,๐œŽโˆž (ฮฉ) = ๐‘“ โˆˆ ๐ถ๐‘โˆž ฮฉ div ๐‘“ = 0

= the space of all smooth solenoidal vector fields with compact support

๐ถ0,๐œŽ(ฮฉ) = ๐ฟโˆž-closure of ๐ถ๐‘,๐œŽโˆž (ฮฉ)

= ๐‘“ โˆˆ ๐ถ(ฮฉ๏ฟฝ) div ๐‘“ = 0 in ฮฉ, ๐‘“ = 0 on ๐œ•ฮฉ if ฮฉ is bounded. (Maremonti โ€™09)

๐ฟ๐œŽ๐‘Ÿ (ฮฉ) = ๐ฟ๐‘Ÿ-closure of ๐ถ๐‘,๐œŽโˆž (ฮฉ), 1 โ‰ค ๐‘Ÿ < โˆž

Spaces for divergence free vector fields

11

Helmholtz decomposition ( ฮฉ bounded ๐ถ1-domain, โ€ฆ )

๐‘ณ๐’“ ๐›€ = ๐‘ณ๐ˆ๐’“ ๐›€ โจ๐‘ฎ๐’“ ๐›€ 1 < ๐‘Ÿ < โˆž , where ๐บ๐‘Ÿ ฮฉ = ๐›ป๐œ‹ โˆˆ ๐ฟ๐‘Ÿ ฮฉ ๐œ‹ โˆˆ ๐ฟ๐‘™๐‘œ๐‘1 (ฮฉ) . ๐ฟ๐œŽ๐‘Ÿ ฮฉ = ๐บ๐‘Ÿ๐‘Ÿ ฮฉ โŠฅ

= ๐‘“ โˆˆ ๐ฟ๐‘Ÿ ฮฉ ๏ฟฝ ๐‘“ โ‹… ๐›ป๐œ‘๐‘‘๐‘ฅ = 0ฮฉ

for all ๐œ‘ โˆˆ ๐บ๐‘Ÿโ€ฒ(ฮฉ)

e.g. Fujiwara โ€“ Morimoto โ€™79, Galdiโ€™s book โ€™11

Here 1 ๐‘Ÿโ„ + 1 ๐‘Ÿโ€ฒโ„ = 1 ๐ฟ๐œŽโˆž ฮฉ : = ๐‘“ โˆˆ ๐ฟโˆž(ฮฉ) โˆซ ๐‘“ โ‹… ๐›ป๐œ‘๐‘‘๐‘ฅ = 0ฮฉ for all ๐œ‘ โˆˆ ๐‘Š๏ฟฝ 1,1(ฮฉ) .

๐ถ0,๐œŽ ฮฉ โŠ‚ ๐ต๐ต๐ถ๐œŽ ฮฉ โŠ‚ ๐ฟ๐œŽโˆž ฮฉ

More spaces

12

Analyticity results for the Stokes semigroup ๐‘บ ๐’• = ๐’†โˆ’๐’•๐’• in ๐‘ณ๐ˆ๐’“ (= ๐‘ณ๐’“-closure of ๐‘ช๐’„,๐ˆ

โˆž ) (i) ๐ฟ๐œŽ2 : easy since the Stokes operator is nonnegative

self-adljoint. (ii) ๐ฟ๐œŽ๐‘Ÿ : V. A. Solonnikov '77, Y. G. โ€™81 (bdd domain) (max regularity / resolvent estimate) โ€ฆ H. Abels โ€“ Y. Terasawa โ€™09 (variable coefficient) bdd, exterior, bent half space.

(iii) ๐ฟ๏ฟฝ๐œŽ๐‘Ÿ space = ๏ฟฝ๐ฟ๐‘Ÿ โˆฉ ๐ฟ๐œŽ2 ๐‘Ÿ โ‰ฅ 2๐ฟ๐‘Ÿ + ๐ฟ๐œŽ2 ๐‘Ÿ < 2

W. Farwig, H. Kozono and H. Sohr โ€™05, โ€™07, โ€™09 General uniformity ๐ถ2-domain / All except

Solonnikov appeals to the resolvent estimate 13

Theorem 1 (M. GeiรŸert, H. Heck, M. Hieber and O. Sawada, J. Reine Angew. Math., 2012). If a uniformly ๐ถ2 domain ฮฉ admits the Helmholtz decomposition in ๐ฟ๐‘Ÿ, then ๐‘†(๐‘ก) is a ๐ถ0-analytic semigroup in ๐ฟ๐œŽ๐‘Ÿ . (Moreover, the maximum ๐ฟ๐‘Ÿregularity holds.)

General results in ๐‘ณ๐’“ setting

14

Applications to the Navier-Stokes equations โ€• strong solvability

๐‘ฃ๐‘ก โˆ’ ฮ”๐‘ฃ + ๐‘ฃ โ‹… ๐›ป๐‘ฃ + ๐›ป๐‘ž = 0, div ๐‘ฃ = 0 in ฮฉ ร— (0,๐‘‡) B.C. ๐‘ฃ = 0 on ๐œ•ฮฉ I.C. ๐‘ฃ|๐‘ก=0= ๐‘ฃ0 in ฮฉ

T. Kato โ€“ H. Fujita โ€™62: ๐ฟ2 theory, ฮฉ: bdd, ๐ป1/2 initial data โ‡’ local existence (3-D) Y. G. โ€“ T. Miyakawa โ€™85: ๐ฟ๐‘œ theory, ฮฉ: bdd, ๐ฟ๐‘› initial data โ‡’ local existence (๐‘›-D) โ€ฆโ€ฆ H. Amann โ€™00 Besov theory, โ€ฆโ€ฆ R. Farwig, H. Sohr, W. Varnhorn โ€™09 โ€ฆโ€ฆ

15

Results in ๐‘ณโˆž setting Theorem 2 (K. Abe โ€“ Y. G., Acta Math., 2013). Let ฮฉ be a bounded ๐ถ3-domain in ๐‘๐‘›(๐‘› โ‰ฅ 2). Then the Stokes semigroup ๐‘†(๐‘ก) is a ๐ถ0 -analytic semigroup in ๐ถ0,๐œŽ ฮฉ (= ๐ต๐ต๐ถ๐œŽ ฮฉ ). It can be regarded as a non ๐ถ0-analytic semigroup in ๐ฟ๐œŽโˆž(ฮฉ). Remark. Whole space case is reduced to the heat semigroup. This type of analyticity result had been only known for half space where the solution is written explicitly (Desch โ€“ Hieber โ€“ Prรผss โ€™01, Solonnikov โ€™03)

16

Theorem 3 (K. Abe โ€“ Y. G., J. Evol. Eq., 2012). Let ฮฉ be an ๐ถ3-exterior domain in ๐‘๐‘›. Then the Stokes semigroup ๐‘† ๐‘ก ๐‘ก>0 is a ๐ถ0 -analytic semigroup in ๐ถ0,๐œŽ ฮฉ and extends to a non ๐ถ0- analytic semigroup in ๐ฟ๐œŽโˆž(ฮฉ). It can be extended as a ๐ถ0-analytic semigroup in ๐ต๐ต๐ถ๐œŽ ฮฉ . Note that for an unbounded domain ๐ถ0,๐œŽ ฮฉ is strictly smaller than ๐ต๐ต๐ถ๐œŽ ฮฉ because ๐‘“ โˆˆ ๐ถ0,๐œŽ ฮฉ implies ๐‘“(๐‘ฅ) โ†’ 0 as ๐‘ฅ โ†’ โˆž.

17

Applications to the Navier-Stokes equations โ€• ๐‘ณโˆž theory

Whole space, J. Leray โ€™34 โ€ฆโ€ฆ Y. G. โ€“ K. Inui โ€“ S. Matsui โ€™99 Half space, V. A. Solonnikov โ€™03, H.-O. Bae โ€“ B. J. Jin โ€™12

๐‘† ๐‘ก ๐‘ƒ๐›ป๐‘“ โˆž โ‰ค ๐ถ๐‘กโˆ’1 2โ„ ๐‘“ โˆž

Bounded and exterior domains by Ken Abe โ€™14:

๐‘† ๐‘ก ๐‘ƒ๐›ป๐‘“ โˆž โ‰ค ๐ถ๐‘กโˆ’๐›ผ2 ๐‘“ โˆž

๐›ผ ๐›ป๐‘“ โˆž1โˆ’๐›ผ , 0 < ๐›ผ < 1

For strong solutions of N-S,

๐‘‡ : existence time ๐‘‡ โ‰ฅ ๐ถ๐‘ฃ0 โˆž

2

๐‘‡โˆ—: possible blow-up time ๐‘ฃ(๐‘ก) โˆž โ‰ฅ ๐ถ/ ๐‘‡โˆ— โˆ’ ๐‘ก 1 2โ„ 18

(i) 2nd order operator on ๐‘ (one dim): K. Yosida โ€™66 (ii) 2nd order elliptic operator K. Masuda โ€™71, โ€™72 book in โ€™75 ๐ฟ๐‘Ÿ theory, cutoff procedure for resolvent and interpolation (iii) higher order, H. B. Stewart โ€™74, โ€™80 Masuda โ€“ Stewart method (iv) degenerate + mixed B. C. K. Taira, โ€™04 See also: P. Acquistapace, B. Terrani (1987) A. Lunardi (1995) Book. More recent. nonsmooth coefficient / nonsmooth domain Heck โ€“ Hieber โ€“ Stavarakidis (2010) VMO coeff., higher order Arendt โ€“ Schaetzle (2010) 2nd order, Lipschitz domain Takuya Suzuki (2014) ๐ถ1-domain, any order.

๐‘ณโˆž-theory for ๐’†โˆ’๐’•๐‘ณ where ๐‘ณ is an elliptic operator

19

Extensions of ๐‘ณโˆž-theory (i) Theorems 2 and 3 are obtained by a direct

analysis of semigroup. It applies to a perturbed half space (K. Abe).

(ii) Resolvent estimate is obtained by extending a method of Masuda โ€“ Stewart (Maximum analyticity angle is obtained, K. Abe, Y. G. and M. Hieber, to appear.)

(iii) Cylindrical domains are OK. work in progress (K. Abe, Y. G., K. Schade, T. Suzuki)

(iv) Counterexample for a layer domain 0 < ๐‘ฅ๐‘› < 1 for ๐‘› โ‰ฅ 3. (L. von Below) 20

We know if ๐ฟ๐‘Ÿ admits the Helmholtz decomposition, ๐‘† ๐‘ก is analytic in ๐ฟ๐œŽ๐‘Ÿ . Is the Helmholtz decomposition really necessary to conclude that ๐‘† ๐‘ก is analytic in ๐ฟ๐œŽ๐‘Ÿ ? (If ๐‘Ÿ = 2, the Helmholtz decomposition always exists and the Stokes operator is self-adjoint so that ๐‘† ๐‘ก is always analytic no matter what ฮฉ is.)

Problem

21

The Helmholtz decomposition in ๐ฟ๐‘Ÿ is not a necessary condition so that ๐‘† ๐‘ก is a ๐ถ0 analytic semigroup in ๐ฟ๐œŽ๐‘Ÿ ฮฉ .

Our answer

22

2. Bogovskiโ€™s example and main results

0 ๐œƒ ๐‘†๐œƒ

๐‘ฅ1

๐‘†๐œƒ = ๐‘ฅ = (๐‘ฅ1, ๐‘ฅ2) arg ๐‘ฅ < ๐œƒ 2โ„ We say that a planar domain ฮฉ is a sector-like domain with opening angle 0 < ๐œƒ < 2๐œ‹ if

ฮฉ โˆ– ๐ท๐‘… = ๐‘†๐œƒ โˆ– ๐ท๐‘…

for some ๐‘… > 0, where ๐ท๐‘… is an open disk of radius ๐‘… centered at the origin.

23

Bogovskiโ€™s example

๐œƒ ฮฉ

๐‘ฅ1

Proposition 2. The ๐ฟ๐‘Ÿ Helmholtz decomposition (๐‘Ÿ > 2) fails for a smooth sector-like domain when ๐œƒ > ๐œ‹ โˆ• (1 โˆ’ 2/๐‘Ÿ).

24

Note that for 4 3โ„ < r < 4, ๐ฟ๐‘Ÿ Helmholtz decomposition holds for all ๐œ‹ โ‰ค ๐œƒ < 2๐œ‹.

Main results Theorem 4 [AGSS]. Let ฮฉ (โŠ‚ ๐‘2) be a ๐ถ3 sector-like domain. Then the Stokes semigroup ๐‘†(๐‘ก) is a ๐ถ0-analytic semigroup in ๐ฟ๐œŽ๐‘Ÿ ฮฉ for any 2 โ‰ค ๐‘Ÿ < โˆž. This follows from interpolation with ๐ฟ2 result and the following ๐ฟโˆž-result. Theorem 5 [AGSS]. Let ฮฉ be a ๐ถ3 sector-like domain. Then ๐‘†(๐‘ก) is a ๐ถ0-analytic semigroup in ๐ถ0,๐œŽ ฮฉ . (Moreover, ๐‘ก ๐›ป2๐‘† ๐‘ก ๐‘ฃ0 โˆž โ‰ค ๐ถ๐‘‡ ๐‘ฃ0 โˆž for ๐‘ก โˆˆ (0,๐‘‡).) AGSS = K. Abe, Y. G., K. Schade, T. Suzuki 25

Idea of the proof โ€“ a blow-up argument a key observation

(Harmonic) pressure gradient estimate by velocity gradient: sup๐‘ฅโˆˆฮฉ

๐‘‘ฮฉ(๐‘ฅ) ๐›ป๐‘ž(๐‘ฅ, ๐‘ก) โ‰ค ๐ถ ๐›ป๐‘ฃ ๐ฟโˆž ๐œ•ฮฉ ๐‘ก

๐‘‘ฮฉ ๐‘ฅ = dist (๐‘ฅ,๐œ•ฮฉ) .

26

Bounds of ๐›ป๐‘ž is not enough to guarantee the uniqueness. Parasitic solution: ๐‘ฃ = ๐‘” ๐‘ก , ๐‘ž ๐‘ฅ, ๐‘ก = โˆ’๐‘”๐‘Ÿ ๐‘ก โ‹… ๐‘ฅ in ๐‘๐‘›. Poiseuille flow type: half space

๐‘ฃ = ๐‘ฃ1 ๐‘ฅ๐‘› , 0, โ€ฆ , 0 ,ใ€€๐‘ž = ๐‘“ ๐‘ก ๐‘ฅ1

๏ฟฝ ๐œ•๐‘ก โˆ’ ฮ” ๐‘ฃ1 = โˆ’๐‘“ ๐‘ก ๐‘ฃ1 = 0 on ๐‘ฅ๐‘› = 0

(div ๐‘ฃ = 0 is automatic)

Pressure should be related to velocity

27

Consider

๐‘ฃ๐‘ก โˆ’ ฮ”๐‘ฃ + ๐›ป๐‘ž = 0 in ฮฉ. Take divergence to get

ฮ”๐‘ž = 0 in ฮฉ since div ๐‘ฃ = 0. Take inner product with ๐‘›ฮฉ (unit exterior normal) and use ๐‘ฃ๐‘ก โ‹… ๐‘›ฮฉ = 0 to get

๐œ•๐‘ž ๐œ•๐‘›ฮฉโ„ = ๐‘›ฮฉ โ‹… ฮ”๐‘ฃ on ๐œ•ฮฉ.

Equations for the pressure

3. Neumann problems with singular data

28

Lemma 1. If div ๐‘ฃ = 0, then ๐‘›ฮฉ โ‹… ฮ”๐‘ฃ = div๐œ•ฮฉ๐‘Š(๐‘ฃ)

with ๐‘Š ๐‘ฃ = โˆ’ ๐›ป๐‘ฃ โˆ’ ๐›ป๐‘ฃ๐‘ก โ‹… ๐‘›ฮฉ.

In three dimensional case,

๐‘›ฮฉ โ‹… ฮ”๐‘ฃ = โˆ’div๐œ•ฮฉ ๐œ” ร— ๐‘›ฮฉ where ๐œ” = curl ๐‘ฃ (vorticity). In any case ๐‘Š is a tangent vector field.

29

The pressure solves

(NP) ฮ”๐‘ž = 0 in ฮฉ

๐œ•๐‘ž ๐œ•๐‘›ฮฉโ„ = div๐œ•ฮฉ๐‘Š on ๐œ•ฮฉ.

Enough to prove that ๐‘‘ฮฉ๐›ป๐‘ž โˆž โ‰ค ๐ถ ๐‘Š โˆž

for all tangential vector field ๐‘Š.

Neumann problem

30

Definition 4 (Weak solution of (NP)). (Ken Abe โ€“ Y. G., โ€™12) Let ฮฉ be a domain in ๐‘๐‘› (๐‘› โ‰ฅ 2) with ๐ถ1 boundary. We call ๐‘ž โˆˆ ๐ฟ๐‘™๐‘œ๐‘1 (ฮฉ๏ฟฝ) a weak solution of (NP) for ๐‘Š โˆˆ ๐ฟโˆž(๐œ•ฮฉ) with ๐‘Š โ‹… ๐‘›ฮฉ = 0 if ๐‘ž with ๐‘‘ฮฉ๐›ป๐‘ž โˆˆ ๐ฟโˆž(ฮฉ) fulfills

๏ฟฝ ๐‘žฮ”๐œ‘๐‘‘๐‘ฅฮฉ

= ๏ฟฝ ๐‘Š โ‹… ๐›ป๐œ‘๐‘‘โ„‹๐‘›โˆ’1

๐œ•ฮฉ

for all ๐œ‘ โˆˆ ๐ถ๐‘2(ฮฉ๏ฟฝ) satisfying ๐œ•๐œ‘ ๐œ•๐‘›ฮฉโ„ = 0 on ๐œ•ฮฉ.

Strictly admissible domain

31

Definition 5 (Strictly admissible domain). Let ฮฉ be a uniformly ๐ถ1 domain. We say that ฮฉ is strictly admissible if there is a constant ๐ถ such that

๐‘‘ฮฉ๐›ป๐‘ž โˆž โ‰ค ๐ถ ๐‘Š ๐ฟโˆž(๐œ•ฮฉ)

holds for all weak solution of (NP) for tangential vector fields ๐‘Š. Note that strictly admissibility implies admissibility defined below.

32

Let ๐‘ƒ: ๐ฟ๏ฟฝ๐‘Ÿ ฮฉ โ†’ ๐ฟ๏ฟฝ๐œŽ๐‘Ÿ ฮฉ be the Helmholtz projection and ๐‘„ = ๐ผ โˆ’ ๐‘ƒ. Applying ๐‘„ to the Stokes equation to get

๐›ป๐‘ž = ๐‘„ ฮ”๐‘ฃ .

Here ๐ฟ๏ฟฝ๐‘Ÿ = ๐ฟ๐‘Ÿ โˆฉ ๐ฟ2, ๐ฟ๏ฟฝ๐œŽ๐‘Ÿ = ๐ฟ๐œŽ๐‘Ÿ โˆฉ ๐ฟ2 for ๐‘Ÿ > 2.

Admissible domain

33

Definition 6 (Ken Abe โ€“ Y. G., Acta Math., 2013). Let ฮฉ be a uniformly ๐ถ1-domain. We say that ฮฉ is admissible if there exists ๐‘Ÿ โ‰ฅ ๐‘› and a constant ๐ถ = ๐ถฮฉ such that

sup๐‘‘ฮฉ(๐‘ฅ) ๐‘„ ๐›ป โ‹… ๐‘“ (๐‘ฅ) โ‰ค ๐ถ ๐‘“ ๐ฟโˆž ๐œ•ฮฉ

hold for all matrix value ๐‘“ = ๐‘“๐‘–๐‘– โˆˆ ๐ถ1(ฮฉ๏ฟฝ) satisfy ๐›ป โ‹… ๐‘“ = โˆ‘ ๐œ•๐‘–๐‘“๐‘–๐‘–๐‘– โˆˆ ๐ฟ๏ฟฝ๐‘Ÿ ฮฉ ,

tr ๐‘“ = 0 and ๐œ•โ„“๐‘“๐‘–๐‘– = ๐œ•๐‘–๐‘“๐‘–โ„“ for all ๐‘–, ๐‘—, โ„“ = 1, โ€ฆ ,๐‘› .

Admissible domain (continued)

34

Remark. (i) This is a property of the solution of the Neumann problem for the Laplace operator. In fact, ๐›ป๐‘ž = ๐‘„ ๐›ป โ‹… ๐‘“ is formally equivalent to

โˆ’ฮ”๐‘ž = div(๐›ป โ‹… ๐‘“) in ฮฉ ๐œ•๐‘ž ๐œ•๐‘›ฮฉโ„ = ๐‘›ฮฉ โ‹… (๐›ป โ‹… ๐‘“) on ๐œ•ฮฉ.

Under the above condition for ๐‘“ we see that ๐‘ž is harmonic in ฮฉ since

div(๐›ป โ‹… ๐‘“) = ๏ฟฝ๐œ•๐‘–๐œ•๐‘–๐‘“๐‘–๐‘–๐‘–,๐‘–

= ๏ฟฝ๐œ•๐‘–๐œ•๐‘–๐‘“๐‘–๐‘– = 0.

35

(ii) The constant ๐ถฮฉ depends on ฮฉ but independent of dilation, translation and rotation.

(iii) If ฮฉ is admissible, we easily obtain the pressure gradient estimate by taking ๐‘“๐‘–๐‘– = ๐œ•๐‘–๐‘ฃ๐‘–.

(iv) It turns out that ๐œ•๐‘ž ๐œ•๐‘›ฮฉโ„ = div๐œ•ฮฉ(๐‘›ฮฉ โ‹… ๐‘“ โˆ’ ๐‘“๐‘ก ).

36

Remark. Strictly admissibility implies admissibility. Example of strictly admissible domains

(a) half space (b) ๐ถ3 bounded domain (c) ๐ถ3 exterior domain

Note that layer domain ๐‘Ž < ๐‘ฅ๐‘› < ๐‘ is not strictly admissible. Consider ๐‘ž ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› = ๐‘ฅ1. Theorem 6 (Ken Abe โ€“ Y. G., Acta Math., 2013). If ฮฉ is ๐ถ3 and admissible, then ๐‘†(๐‘ก) is a ๐ถ0-analytic semigroup in ๐ถ0,๐œŽ(ฮฉ). (The conclusion of Theorem 5 holds.)

37

Estimates for harmonic pressure gradient

Theorem 7 (A key step). If ฮฉ is a ๐ถ2 sector-like domain, then it is admissible (not strictly admissible). A strictly admissibility is proved for a bounded domain (K. Abe โ€“ Y. G.), exterior domain (K. Abe โ€“ Y. G.), a perturbed half space (K. Abe). For a bounded domain there is another proof by C. Kenig, F. Lin, Z. Shen (2013).

38

Sector-like domain

39

Lemma 2. Let ฮฉ be a ๐ถ2 sector-like domain in ๐‘2. Then there is a constant ๐ถ such that

๐‘‘ฮฉ ๐‘ฅ ๐›ป๐‘ข โˆž โ‰ค ๐ถ ๐‘” โˆž for all weak solution ๐‘ข โˆˆ ๐ฟ๐‘™๐‘œ๐‘1 ฮฉ๏ฟฝ๐‘… of (NP) ฮ”๐‘ข = 0 in ฮฉ๐‘…

๐œ•๐œ•๐œ•๐‘›ฮฉ

= div๐œ•ฮฉ ๐‘” on ๐œ•ฮฉ๐‘…

satisfying ๐‘” โ‹… ๐‘›ฮฉ = 0 on ๐œ•ฮฉ โˆฉ ๐ท2๐‘… and ๐‘” = 0 on ๐œ•๐ท2๐‘… โˆฉ ฮฉ provided that ๐‘‘ฮฉ๐›ป๐‘ข โˆž < โˆž.

Here ฮฉ๐‘… โ‰” ฮฉ โˆฉ ๐ท2๐‘… .

2๐‘… ฮฉ๐‘…

๐‘ฅ1

Note that ๐ถ is independent of ๐‘…. This estimate yields

Lemma 3. There exists a constant ๐ถ such that all weak solutions ๐‘ข โˆˆ ๐ฟ๐‘™๐‘œ๐‘1 ฮฉ๏ฟฝ of (NP) with ๐›๐’– โˆˆ๐‘ณ๐Ÿ ๐›€ and ๐‘” โˆˆ ๐ฟโˆž ๐œ•ฮฉ with ๐‘” โ‹… ๐‘›ฮฉ = 0 fulfills ๐‘‘ฮฉ๐›ป๐‘ข โˆž โ‰ค ๐ถ ๐‘” โˆž.

This yields Theorem 7.

Sector-like domain (continued)

40

2๐‘…

ฮฉ๐‘…

๐‘ฅ1

We argue by contradiction ๐‘ข๐‘š,๐‘”๐‘š,๐‘…๐‘š ๐‘š=1โˆžโˆƒ , such

that 1 = ๐‘‘ฮฉ๐›ป๐‘ข๐‘š ๐ฟโˆž(ฮฉ๐‘…๐‘š) > ๐‘š ๐‘”๐‘š ๐ฟโˆž (๐œ•ฮฉโˆฉ๐ท2๐‘…๐‘š)

Case A ๐‘…๐‘š โ†’ โˆž as ๐‘š โ†’ โˆž

Case B lim๐‘šโ†’โˆž ๐‘…๐‘š < โˆž

We only discuss case A. We take ๐‘ฅ๐‘š โˆˆ ฮฉ๐‘…๐‘š such that

๐‘‘ฮฉ ๐‘ฅ๐‘š ๐›ป๐‘ข๐‘š(๐‘ฅ๐‘š) > 1 2โ„ . We may assume ๐‘ข๐‘š ๐‘ฅ๐‘š = 0 by subtracting a constant.

Idea of the proof of Lemma 2

41

Case 1 subsequence ๐‘ฅ๐‘š๐‘˜โˆƒ โ†’ ๐‘ฅ๏ฟฝ

Case 2 ๐‘ฅ๐‘š โ†’ โˆž Case 1 (a) ๐‘ฅ๏ฟฝ โˆˆ ฮฉ, (Case 1 (b) ๐‘ฅ๏ฟฝ โˆˆ ๐œ•ฮฉ)

๐‘ข๐‘š converges to ๐‘ข locally uniformly with its derivatives in ฮฉ and ๐‘ข ๐‘ฅ๏ฟฝ = 0. We now apply the uniqueness to conclude ๐‘ข โ‰ก 0 which contradicts ๐‘‘ ๐‘ฅ๏ฟฝ ๐›ป๐‘ข(๐‘ฅ๏ฟฝ) โ‰ฅ 1 2โ„ .

Compactness

42

Lemma 4. Let ฮฉ be a ๐ถ2 sector-like domain. Let ๐‘ข โˆˆ ๐ถ2 ฮฉ โˆฉ ๐ถ1(ฮฉ๏ฟฝ) be a solution of (NP) in ฮฉ with ๐‘” = 0. Assume that ๐‘‘ฮฉ๐›ป๐‘ข โˆž < โˆž. Then ๐‘ข is a constant function.

Uniqueness

43

Case 1 (b) can be handled by uniqueness in a half space with blow-up argument ๐‘ฃ๐‘š ๐‘ฅ = ๐‘ข๐‘š ๐‘ฅ๐‘š + ๐‘‘๐‘š๐‘ฅ , ๐‘‘๐‘š= ๐‘‘ฮฉ ๐‘ฅ๐‘š .

Case 2 can be treated by scaling-down argument

๐‘ค๐‘š ๐‘ฅ = ๐‘ข๐‘š ๐‘ฅ ๐‘ฅ๐‘šโ„ and uniqueness (with zero flux condition) in ๐‘†๐œƒ โˆฉ ๐ท๐‘† with some ๐‘† > 0 or ๐‘†๐œƒ.

Other cases

44

ฮ“๐‘…

๐‘…

(1) Assumption implies zero flux condition

๏ฟฝ๐œ•๐‘ข๐œ•๐‘Ÿ

ฮ“๐‘…โˆฉฮฉ

๐‘‘โ„‹1 = 0, ๐‘… โ‰ซ 1,

where ฮ“๐‘… = ๐œ•๐ท๐‘…. This implies that ๐‘ข is bounded in ฮฉ.

A key observation for uniqueness

45

(2) We may assume โˆซ ๐‘ขฮ“๐‘…โˆฉฮฉ๐‘‘โ„‹1 = 0 for

๐‘… โ‰ซ 1. If ๐‘ข attains its maximum, the strong maximum principle implies ๐‘ข = const.

(3) In the case max is not attained, we consider sequence ๐‘ฅ๐‘š such that ๐‘ข ๐‘ฅ๐‘š โ†’ sup๐‘ข , ๐‘ฅ๐‘š โ†’ โˆž . We scale down and obtain a contradiction to the uniqueness result in a sector under zero flux condition.

46

Summary โ€ข We prove that a ๐ถ2 sector-like domain is admissible.

โ€ข A similar idea works for a domain with finitely many cylindrical outlets.

Theorem 4. Let ฮฉ (โŠ‚ ๐‘2) be a ๐ถ3 sector-like domain. Then the Stokes semigroup ๐‘†(๐‘ก) is a ๐ถ0 -analytic semigroup in ๐ฟ๐œŽ๐‘Ÿ ฮฉ for any 2 โ‰ค ๐‘Ÿ < โˆž.

Theorem 5. Let ฮฉ be a ๐ถ3 sector-like domain. Then ๐‘†(๐‘ก) is a ๐ถ0-analytic semigroup in ๐ถ0,๐œŽ ฮฉ . (Moreover, ๐‘ก ๐›ป2๐‘† ๐‘ก ๐‘ฃ0 โˆž โ‰ค ๐ถ๐‘‡ ๐‘ฃ0 โˆž for ๐‘ก โˆˆ (0,๐‘‡).)

47