Lab On a Chip Devices for Water Analysismitra/lab-on-a-chip-15.pdfLab On a Chip Devices for Water...

Post on 20-Aug-2020

8 views 0 download

Transcript of Lab On a Chip Devices for Water Analysismitra/lab-on-a-chip-15.pdfLab On a Chip Devices for Water...

Lab On a Chip Devices for Water Analysis

1. “Microfluidic supported liquid membrane extraction”. X. Wang and S. Mitra. Anal. Chim. Acta. 2005, 543, 92-98.

2. “A sol-gel approach for fabrication of μ-SPE on PDMS micro channels”. M. Karwa, S. Mitra and D. Hahn. Anal. Chim. Acta. 2005, 546, 22-29.

3. “A microfluidic hollow fiber membrane extractor for arsenic (V) detection.” K. Hylton and Somenath Mitra, Anal. Chim. Acta., 2008, 607, 45-49.

Lab-on-a-chip, Total Analytical System

Sample

Extraction

Sample

Concentration

Separation/

Processing

Detection

On-Chip SLMME

1. “Microfluidic supported liquid membrane extraction”. X. Wang and S. Mitra. Anal. Chim. Acta. 2005, 543, 92-98.

1. “A microfluidic hollow fiber membrane extractor for arsenic (V) detection.” K. Hylton and Somenath Mitra, Anal. Chim. Acta., 2008, 607, 45-49.

Silicon Micro Fabricated Micro-concentrator

for Gas Sensing

1. “Design and fabrication of microheaters for microfluidic channels”. M. Kim, S. Mitra, S. Kishore, and D. Misra, Sensors and Materials 2006, 18, 35-48.

2. “A microfabricated microconcentrator for sensors and gas chromatography”. M. Kim and S. Mitra, J. Chromatogr. A. 2003, 996 (1-2), 1-11.

Top View

456m

31,580m

Contact pad

Contact pad

A conventional Sorbent Trap

A Micro fabricated Microconcentrator

456m

31,580m

54º angle side wall

Crossection View

“Design and fabrication of microheaters for microfluidic channels”. M. Kim, S. Mitra, S. Kishore, and D. Misra, Sensors and Materials 2006, 18, 35-48. “A microfabricated microconcentrator for sensors and gas chromatography”. M. Kim and S. Mitra, J. Chromatogr. A. 2003, 996 (1-2), 1-11.

Sample In

Sample Out to Detector

Pulse Heating

M. Kim and S. Mitra, J. Chromatogr. A. 2003, 996 (1-2), 1-11.

Testing of the Microconcentrator Using Organic Vapors

Computer Flame Ionization Detector

Pulse Heating

Microconcentrator

Sample In

Thermal Stability Test: Pulsed for 3 seconds at Every 5 minutes Interval for 5 hours

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500 600 700 800 900 1000

Time [sec]

Cu

rren

t [A

]

20700 20800 20900 30000

Microheater Fabrication Steps

• P-type, <100> oriented silicon wafer deposited with 2000 Å oxide

• 1500 Å Silicon Nitride deposited

• Patterning of Silicon nitride and oxide

• Reactive Ion Etching of Silicon nitride and oxide, PR strip

Patterning for Ion Implantation

Deposition of Aluminum alloys

Boron Implantation of Silicon Patterning of aluminum layer

Strip PR Strip PR

KOH Etching

6. Spin-on-glass was coated

7. Polymer was coated

8. Bonding with quartz wafer using

WaferGrip

SEM Image and Cross Section of the Anisotropically Etched Channel of the Microconcentrator

Quartz

Si Silicon Oxide

Heating Layer

Spin-On-Glass (SOG)

Polymer

Silicon Nitride

54º angle side wall

Temperature Characteristic of Heaters with Aluminum Film

v.s. Boron Doped when 36V were applied

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70

Time [sec]

Tem

p [o

C]

Heater with 1 micron thick film

Heater with 3 micron thick film

Heater with boron doped

Temperature Profile of Heater With Al film with Various Voltages Applied

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80

Time [sec]

Tem

per

atu

re [

oC

]

36V

30V

15V

cooling profile