Lab On a Chip Devices for Water Analysis mitra/lab-on-a-chip-15.pdf Lab On a Chip Devices for Water

download Lab On a Chip Devices for Water Analysis mitra/lab-on-a-chip-15.pdf Lab On a Chip Devices for Water

of 15

  • date post

    20-Aug-2020
  • Category

    Documents

  • view

    1
  • download

    0

Embed Size (px)

Transcript of Lab On a Chip Devices for Water Analysis mitra/lab-on-a-chip-15.pdf Lab On a Chip Devices for Water

  • Lab On a Chip Devices for Water Analysis

    1. “Microfluidic supported liquid membrane extraction”. X. Wang and S. Mitra. Anal. Chim. Acta. 2005, 543, 92-98.

    2. “A sol-gel approach for fabrication of μ-SPE on PDMS micro channels”. M. Karwa, S. Mitra and D. Hahn. Anal. Chim. Acta. 2005, 546, 22-29.

    3. “A microfluidic hollow fiber membrane extractor for arsenic (V) detection.” K. Hylton and Somenath Mitra, Anal. Chim. Acta., 2008, 607, 45-49.

  • Lab-on-a-chip, Total Analytical System

    Sample

    Extraction

    Sample

    Concentration

    Separation/

    Processing

    Detection

  • On-Chip SLMME

    1. “Microfluidic supported liquid membrane extraction”. X. Wang and S. Mitra. Anal. Chim. Acta. 2005, 543, 92-98.

    1. “A microfluidic hollow fiber membrane extractor for arsenic (V) detection.” K. Hylton and Somenath Mitra, Anal. Chim. Acta., 2008, 607, 45-49.

  • Silicon Micro Fabricated Micro- concentrator

    for Gas Sensing

    1. “Design and fabrication of microheaters for microfluidic channels”. M. Kim, S. Mitra, S. Kishore, and D. Misra, Sensors and Materials 2006, 18, 35-48.

    2. “A microfabricated microconcentrator for sensors and gas chromatography”. M. Kim and S. Mitra, J. Chromatogr. A. 2003, 996 (1-2), 1-11.

  • Top View

    456m

    31,580m

    Contact pad

    Contact pad

    A conventional Sorbent Trap

    A Micro fabricated Microconcentrator

  • 456m

    31,580m

    54º angle side wall

    Crossection View

    “Design and fabrication of microheaters for microfluidic channels”. M. Kim, S. Mitra, S. Kishore, and D. Misra, Sensors and Materials 2006, 18, 35-48. “A microfabricated microconcentrator for sensors and gas chromatography”. M. Kim and S. Mitra, J. Chromatogr. A. 2003, 996 (1-2), 1-11.

  • Sample In

    Sample Out to Detector

    Pulse Heating

    M. Kim and S. Mitra, J. Chromatogr. A. 2003, 996 (1-2), 1-11.

  • Testing of the Microconcentrator Using Organic Vapors

    Computer Flame Ionization Detector

    Pulse Heating

    Microconcentrato r

    Sample In

  • Thermal Stability Test: Pulsed for 3 seconds at Every 5 minutes Interval for 5 hours

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    0 100 200 300 400 500 600 700 800 900 1000

    Time [sec]

    C u

    rr en

    t [A

    ]

    20700 20800 20900 30000

  • Microheater Fabrication Steps

        

    • P-type, oriented silicon wafer deposited with 2000 Å oxide

    • 1500 Å Silicon Nitride deposited

    • Patterning of Silicon nitride and oxide

    • Reactive Ion Etching of Silicon nitride and oxide, PR strip

  •     

    Patterning for Ion Implantation

    Deposition of Aluminum alloys

    Boron Implantation of Silicon Patterning of aluminum layer

    Strip PR Strip PR

    KOH Etching

        

  • 6. Spin-on-glass was coated

    7. Polymer was coated

    8. Bonding with quartz wafer using

    WaferGrip

  • SEM Image and Cross Section of the Anisotropically Etched Channel of the Microconcentrator

    Quartz

    Si Silicon Oxide

    Heating Layer

    Spin-On- Glass (SOG)

    Polymer

    Silicon Nitride

    54º angle side wall

  • Temperature Characteristic of Heaters with Aluminum Film

    v.s. Boron Doped when 36V were applied

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    0 10 20 30 40 50 60 70

    Time [sec]

    T em

    p [o

    C ]

    Heater with 1 micron thick film

    Heater with 3 micron thick film

    Heater with boron doped

  • Temperature Profile of Heater With Al film with Various Voltages Applied

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    0 10 20 30 40 50 60 70 80

    Time [sec]

    T em

    p er

    at u

    re [

    o C

    ]

    36V

    30V

    15V

    cooling profile