Ip15 color - אוניברסיטת חיפה

Post on 17-Feb-2022

4 views 0 download

Transcript of Ip15 color - אוניברסיטת חיפה

Color Representation

Electromagnetic Radiation -Spectrum

Gamma X rays Infrared Radar FM TV AMUltra-violet

10-12

10-8

10-4

104

1 108

electricityACShort-

wave

400 nm 500 nm 600 nm 700 nmWavelength in nanometers (1nm=10-9 m)

Wavelength in meters (m)

Visible light

The Spectral Power Distribution (SPD) of a light is a function f(λ) which defines the energy at each wavelength.

Wavelength (λ)400 500 600 700

0

0.5

1

Rel

ativ

e P

ower

Spectral Power Distribution

Examples of Spectral power Distributions

Blue Skylight Tungsten bulb

Red monitor phosphor Monochromatic light

400 500 600 7000

0.5

1

400 500 600 7000

0.5

1

400 500 600 7000

0.5

1

400 500 600 7000

0.5

1

+ -

+ -

+ -

test match

Color Matching ExperimentThree primary lights are set to match a test light.

=~

Test light Match light

400 500 600 7000400 500 600 7000

Pow

er

Metamer - two lights that appear the same visually. They might have different SPDs (spectral power distributions).

Trichromatic Color Theory

Thomas Young (1773-1829) -A few different retinal receptors operating with different wavelength sensitivities will allow humans to perceivethe number of colors that they do.Suggested 3 receptors.

Helmholtz & Maxwell (1850) -Color matching with 3 primaries.

“tri”=three “chroma”=colorcolor vision is based on three primaries

(i.e., it is 3 dimensional).

The Human Eye

Optic NerveFovea

Vitreous

Optic Disc

Lens

Pupil

Cornea

Ocular MuscleRetina

Humor

Iris

The Human Retina

light

rods cones

horizontal

amacrine

bipolar

ganglion

Cones -

Wavelength (nm)

Rel

ativ

e se

nsiti

vity

Retinal Photoreceptors

Cone Spectral Sensitivity

400 500 600 7000

0.25

0.5

0.75

1

• High illumination levels (Photopic vision)• Less sensitive than rods.• 5 million cones in each eye.• Only cones in fovea (aprox. 50,000).• Density decreases with distance from fovea.• 3 cone types differing in their spectral

sensitivity: L , M, and S cones.

LMS

Linear Color Spaces

Colors in 3D color space can be described as linear combinations of 3 basis colors:

primaries

a• + b• + c•=

The representation of :

is then given by: (a, b, c)

12614111

3636 111

36

111

36 12

12 17

17 111

14

126

17

36

12

111

3636200 12

14

126 17

36 36

111

12

14

3636200 12

14

126 17

36 36

111

36200

200

12

14111

14

126

126

17

36

36

36

36

12

14

111

111

36

12617

36

36200

111

72

72

12

12 17

10 128

3617

200 11112

14

126

126

126

126

17 17

17

17

36

36

36

36

36

200

200

200

12

12

12

14

14

111

111

72

72

72 106 15510 128

3617

200 11112

14

126

126

126

126

17 17

17

17

36

36

36

36

36

200

200

200

12

12

12

14

14

111

111

72

72

72 106 155

14

126 17

36 36

111

36200

200

12

14111

14

126

126

17

36

36

36

36

12

14

111

111

36

12617

36

36200

111

72

72

12

12 17

12614111

3636 111

36

111

36 12

12 17

17 111

14

126

17

36

12

111

3636200 12

14

126 17

36 36

111

12

14

3636200 12

Rgb Image

black

redgreen

blue

white

The RGB Cube

Color Edge Detection

Original

R - Edges G - Edges

B - Edges All - Edges

Color Edge Detection

Original

R - Edges G - Edges

B - Edges All - Edges

RGB Color Cube

R

G

B

Brightness

HueSaturation

Brightness

Black

White

RG

B

Color Description

Hue (red, green, yelow, blue ...)

Saturation (pink,bright red, ....)

Lightness (black, grey, white ....)

MayuraDraw

PowerPoint

PhotoShop

YIQ - Color Space

NTSC = National Television Systems Committee

Y = luminanceI = red-greenQ = blue-yellow

RGB

=YIQ

0.177 0.813 0.0110.540 -0.263 -0.1740.246 -0.675 0.404

R G B are the CIE-RGB

RGB To Monochrome

RGB

Y

Original Y - Blur

I - Blur Q - Blur

Subtractive Color System - CMYK

Cyan

Magenta

Yellow

blacK

= removes red

= removes green

= removes blue

= removes all

Printer Dyes:

cyan magenta yellow

B G R B G R B G R

trans

mit

Ideal block dyes:

Opponent Color Wheel

Additive primariesSubtractive Primaries

yellow

B G R

Multiplicative (Subtractive) Color System

red = magenta + yellow

magenta

B G R

red

R

B G R*

=

B G R

= magenta + yellow= cyan + yellow= magenta + cyan

redgreenblue

Cyan - controls amount of red in print:

cyan

B G R

low C = high R (also high G and B)high C = low R (high G and B)

R G BR G BR G BHigh density

cyanMedium density

cyanLow density

cyan

CMY + Black

C + M + Y = K (black)

• Using three inks for black is expensive• C+M+Y = dark brown not black• Black instead of C+M+Y is crisper with more

contrast.

100 50 70

Undercolor removal -(gray component replacement)

=

50 0 2050

+

C M Y C M YK

R G R G R G R GG B G B G B G BR G R G R G R GG B G B G B G BR G R G R G R GG B G B G B G BR G R G R G R GG B G B G B G B

R R R R R R R RR R R R R R R RR R R R R R R RR R R R R R R RR R R R R R R RR R R R R R R RR R R R R R R RR R R R R R R R

G G G G G G G GG G G G G G G GG G G G G G G GG G G G G G G GG G G G G G G GG G G G G G G GG G G G G G G GG G G G G G G G

B B B B B B B BB B B B B B B BB B B B B B B BB B B B B B B BB B B B B B B BB B B B B B B BB B B B B B B BB B B B B B B B

demosaic

Demosaicing

Digital camera (Kodak DS40)

Demosaicing - Linear interpolation

R R R R

R R R R

R R R R

R R R R

R R R R R R R RR R R R R R R RR R R R R R R RR R R R R R R RR R R R R R R RR R R R R R R RR R R R R R R RR R R R R R R R

R G R G R G R G B G B G B GR G R G R G R G B G B G B GR G R G R G R G B G B G B G

R image

G G G G G G G

G G G G G G G

G G GG G G G

R R R R

R R R R

R R R R

B B B

B B B

B B B

G image B image

G G G G G G GG G G G G G GG G G G G G GG G G G G G GG G G G G G GG G G G G G G

R R R R R R RR R R R R R RR R R R R R R R R R R R R R R R R R R R R R R R R R R R

B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B

interpolate interpolate

Demosaic Aliasing

Demosaicing - Example (Kodak)

Demosaicing - Various Approaches

Regularization

Minimize over a functional with a data fit termand an inter-channel color correlation term.

Minimal Surface

Minimize over a functional with a data fit termand a 5D surface area term. (Beltrami Flow)

100 50

Grayscale Image

RGB Image

x

y

B

GR

5D

3D

(Gamer & Keren)

(Kimmel)

Learning SchemesLearn linear and non linear optimal filtersfor classes of images (ANN).

(Kapah & Hel-Or)

Demosaicing - Various Approaches

Quadratic - Learned on Image

Channel independent Perceptron (Linear)

Demosaicing - Learning Schemes

Quadratic - Learned on Class

12614111

3636 111

36

111

36 12

12 17

17 111

14

126

17

36

12

111

3636200 12

14

126 17

36 36

111

12

14

3636200 12

14

126 17

36 36

111

36200

200

12

14111

14

126

126

17

36

36

36

36

12

14

111

111

36

12617

36

36200

111

72

72

12

12 17

10 128

3617

200 11112

14

126

126

126

126

17 17

17

17

36

36

36

36

36

200

200

200

12

12

12

14

14

111

111

72

72

72 106 15510 128

3617

200 11112

14

126

126

126

126

17 17

17

17

36

36

36

36

36

200

200

200

12

12

12

14

14

111

111

72

72

72 106 155

14

126 17

36 36

111

36200

200

12

14111

14

126

126

17

36

36

36

36

12

14

111

111

36

12617

36

36200

111

72

72

12

12 17

12614111

3636 111

36

111

36 12

12 17

17 111

14

126

17

36

12

111

3636200 12

14

126 17

36 36

111

12

14

3636200 12

Color Quantization

Indexed Image

12614111

3636 111

36

111

5 12

12 17

17 111

14

126

17

36

12

111

3636200 12

14

126 17

36 36

111

12

14

3636200 12

Image Independent Quantization

original gray value

quantizedgray value

0 64 128 192 255

32 96 160 224

original gray value

quantizedgray value

0 64 128 192 255

32 96 160 224

original gray value

quantizedgray value

0 64 128 192 255

32 96 160 224

Image Independent Quantization

050

100150

200250

0

100

200

3000

50

100

150

200

250

Original 125 Colors

64 Colors 27 Colors

Image Independent Quantization

050

100150

200 250

0100

200300

0

50

100

150

200

250

10 180

3617

200

14

126

12617 17

36

36200 12

12

14

126

36117200

200

12

14111

126

3636

12617

36 111

72

126172111

3636 111

36

12

17 111

14 36

36200

3612

RGB Space

RGB Image

050

100150

200250

0

100

200

3000

50

100

150

200

250

RGB Space

Image Dependent Quantization

050

100150

200250

0

100

200

3000

50

100

150

200

250

Clustering using Iso Data

Input: C={ci}, i=1..n - color points.Output: S={sj}, j=1..k - color indices.

• Distribute sj, j=1..k, uniformly in color space.

• Divide C into k classes based of distances to S.

• For each class j, calculate the mean Mj.

• Set Sj=Mj.• Iterate until convergence.

Original

Image Dependent Quantization

Independent Dependent

Albers (1975)