Harish-Chandra characters and the local Langlands ...Harish-Chandra characters and the local...

Post on 24-Jun-2020

8 views 0 download

Transcript of Harish-Chandra characters and the local Langlands ...Harish-Chandra characters and the local...

Harish-Chandra characters and the localLanglands correspondence

Tasho Kaletha

University of Michigan

16. November 2018

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.:L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q)

compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.:L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group

encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.:L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equations

ϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.:L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C)

matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.:L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representation

L(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.:L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ)

Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.:L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.:L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondence

ϕ↔ π

π automorphic rep.:L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.:L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.:

L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.: L2(Σ \GLn(R)) x GLn(R)

L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.: L2(GLn(Q) \GLn(A)) x GLn(A)

L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.: L2(GLn(Q) \GLn(A)) x GLn(A)

L(s, ϕ) = L(s, π)

Application

Langlands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

Galois representations

Γ = Gal(Q/Q) compact topological group encodessymmetries of solutions to rational polynomial equationsϕ : Γ→ GLn(C) matrix representationL(s, ϕ) Artin L-function

Global Langlands correspondenceϕ↔ π

π automorphic rep.: L2(GLn(Q) \GLn(A)) x GLn(A)

L(s, ϕ) = L(s, π)

ApplicationLanglands 1980: Proves many cases of the 2-dimensionalArtin conjecture

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

General reductive groups

ϕ : Γ→ G, G = Sp2n(C), SOn(C), . . .

ϕ↔ π

π automorphic representation: L2(G(Q) \G(A)) x G(A)

G↔ G Langlands dual groups

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

General reductive groups

ϕ : Γ→ G

, G = Sp2n(C), SOn(C), . . .

ϕ↔ π

π automorphic representation: L2(G(Q) \G(A)) x G(A)

G↔ G Langlands dual groups

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

General reductive groups

ϕ : Γ→ G, G = Sp2n(C)

, SOn(C), . . .

ϕ↔ π

π automorphic representation: L2(G(Q) \G(A)) x G(A)

G↔ G Langlands dual groups

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

General reductive groups

ϕ : Γ→ G, G = Sp2n(C), SOn(C),

. . .

ϕ↔ π

π automorphic representation: L2(G(Q) \G(A)) x G(A)

G↔ G Langlands dual groups

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

General reductive groups

ϕ : Γ→ G, G = Sp2n(C), SOn(C), . . .

ϕ↔ π

π automorphic representation: L2(G(Q) \G(A)) x G(A)

G↔ G Langlands dual groups

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

General reductive groups

ϕ : Γ→ G, G = Sp2n(C), SOn(C), . . .

ϕ↔ π

π automorphic representation: L2(G(Q) \G(A)) x G(A)

G↔ G Langlands dual groups

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

General reductive groups

ϕ : Γ→ G, G = Sp2n(C), SOn(C), . . .

ϕ↔ π

π automorphic representation:

L2(G(Q) \G(A)) x G(A)

G↔ G Langlands dual groups

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

General reductive groups

ϕ : Γ→ G, G = Sp2n(C), SOn(C), . . .

ϕ↔ π

π automorphic representation: L2(G(Q) \G(A)) x G(A)

G↔ G Langlands dual groups

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

General reductive groups

ϕ : Γ→ G, G = Sp2n(C), SOn(C), . . .

ϕ↔ π

π automorphic representation: L2(G(Q) \G(A)) x G(A)

G↔ G Langlands dual groups

Tasho Kaletha Local Langlands Correspondence

Global Langlands correspondence

General reductive groups

ϕ : Γ→ G, G = Sp2n(C), SOn(C), . . .

ϕ↔ π

π automorphic representation: L2(G(Q) \G(A)) x G(A)

G↔ G Langlands dual groups

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ

, p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .

Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z

, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugation

Γp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondence

ϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

Results

GLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, Henniart

SpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSW

General G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G?

partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local Langlands correspondence

Decomposition groups

Γp = Gal(Qp/Qp) ⊂ Γ , p =∞,2,3,5,7, . . .Γ∞ = Z/2Z, generated by complex conjugationΓp infinite, compact, (p <∞)

Local correspondenceϕp ↔ πp

πp irreducible (admissible) representation of G(Qp)

ResultsGLN : Harris-Taylor, HenniartSpN , SON ,UN , Arthur, Mok, KMSWGeneral G? partial results in positive characteristicLafforgue-Genestier

Tasho Kaletha Local Langlands Correspondence

Local representation theory

The groups

G(R): locally connected, analytic methodsG(Qp): totally disconnected, little analysis

Harish-Chandra’s Lefschetz Principle

G(R) and G(Qp) ought to behave similarly

Langlands classification

π admissible↔ (M, σ, ν), M ⊂ G Levi, σ ∈ Irr(M) tempered

R-groups

π tempered↔ (M, σ, τ), M ⊂ G Levi, σ ∈ Irr(M) discrete

In : IGP (σ)→ IG

P (σ), n ∈W (M,G)(F )σ

Tasho Kaletha Local Langlands Correspondence

Local representation theory

The groups

G(R): locally connected

, analytic methodsG(Qp): totally disconnected, little analysis

Harish-Chandra’s Lefschetz Principle

G(R) and G(Qp) ought to behave similarly

Langlands classification

π admissible↔ (M, σ, ν), M ⊂ G Levi, σ ∈ Irr(M) tempered

R-groups

π tempered↔ (M, σ, τ), M ⊂ G Levi, σ ∈ Irr(M) discrete

In : IGP (σ)→ IG

P (σ), n ∈W (M,G)(F )σ

Tasho Kaletha Local Langlands Correspondence

Local representation theory

The groups

G(R): locally connected, analytic methods

G(Qp): totally disconnected, little analysis

Harish-Chandra’s Lefschetz Principle

G(R) and G(Qp) ought to behave similarly

Langlands classification

π admissible↔ (M, σ, ν), M ⊂ G Levi, σ ∈ Irr(M) tempered

R-groups

π tempered↔ (M, σ, τ), M ⊂ G Levi, σ ∈ Irr(M) discrete

In : IGP (σ)→ IG

P (σ), n ∈W (M,G)(F )σ

Tasho Kaletha Local Langlands Correspondence

Local representation theory

The groups

G(R): locally connected, analytic methodsG(Qp): totally disconnected, little analysis

Harish-Chandra’s Lefschetz Principle

G(R) and G(Qp) ought to behave similarly

Langlands classification

π admissible↔ (M, σ, ν), M ⊂ G Levi, σ ∈ Irr(M) tempered

R-groups

π tempered↔ (M, σ, τ), M ⊂ G Levi, σ ∈ Irr(M) discrete

In : IGP (σ)→ IG

P (σ), n ∈W (M,G)(F )σ

Tasho Kaletha Local Langlands Correspondence

Local representation theory

The groups

G(R): locally connected, analytic methodsG(Qp): totally disconnected, little analysis

Harish-Chandra’s Lefschetz Principle

G(R) and G(Qp) ought to behave similarly

Langlands classification

π admissible↔ (M, σ, ν), M ⊂ G Levi, σ ∈ Irr(M) tempered

R-groups

π tempered↔ (M, σ, τ), M ⊂ G Levi, σ ∈ Irr(M) discrete

In : IGP (σ)→ IG

P (σ), n ∈W (M,G)(F )σ

Tasho Kaletha Local Langlands Correspondence

Local representation theory

The groups

G(R): locally connected, analytic methodsG(Qp): totally disconnected, little analysis

Harish-Chandra’s Lefschetz Principle

G(R) and G(Qp) ought to behave similarly

Langlands classification

π admissible↔ (M, σ, ν), M ⊂ G Levi, σ ∈ Irr(M) tempered

R-groups

π tempered↔ (M, σ, τ), M ⊂ G Levi, σ ∈ Irr(M) discrete

In : IGP (σ)→ IG

P (σ), n ∈W (M,G)(F )σ

Tasho Kaletha Local Langlands Correspondence

Local representation theory

The groups

G(R): locally connected, analytic methodsG(Qp): totally disconnected, little analysis

Harish-Chandra’s Lefschetz Principle

G(R) and G(Qp) ought to behave similarly

Langlands classification

π admissible↔ (M, σ, ν), M ⊂ G Levi, σ ∈ Irr(M) tempered

R-groups

π tempered↔ (M, σ, τ), M ⊂ G Levi, σ ∈ Irr(M) discrete

In : IGP (σ)→ IG

P (σ), n ∈W (M,G)(F )σ

Tasho Kaletha Local Langlands Correspondence

Local representation theory

The groups

G(R): locally connected, analytic methodsG(Qp): totally disconnected, little analysis

Harish-Chandra’s Lefschetz Principle

G(R) and G(Qp) ought to behave similarly

Langlands classification

π admissible↔ (M, σ, ν), M ⊂ G Levi, σ ∈ Irr(M) tempered

R-groups

π tempered↔ (M, σ, τ), M ⊂ G Levi, σ ∈ Irr(M) discrete

In : IGP (σ)→ IG

P (σ), n ∈W (M,G)(F )σ

Tasho Kaletha Local Langlands Correspondence

Local representation theory

The groups

G(R): locally connected, analytic methodsG(Qp): totally disconnected, little analysis

Harish-Chandra’s Lefschetz Principle

G(R) and G(Qp) ought to behave similarly

Langlands classification

π admissible↔ (M, σ, ν), M ⊂ G Levi, σ ∈ Irr(M) tempered

R-groups

π tempered↔ (M, σ, τ), M ⊂ G Levi, σ ∈ Irr(M) discrete

In : IGP (σ)→ IG

P (σ), n ∈W (M,G)(F )σ

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series:

aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal2 π supercuspidal: aij(g) compact modulo center3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal2 π supercuspidal: aij(g) compact modulo center3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case

1 Many discrete series are supercuspidal2 π supercuspidal: aij(g) compact modulo center3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal

2 π supercuspidal: aij(g) compact modulo center3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal2 π supercuspidal:

aij(g) compact modulo center3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal2 π supercuspidal: aij(g) compact modulo center

3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal2 π supercuspidal: aij(g) compact modulo center3 π does not appear in any parabolic induction

4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal2 π supercuspidal: aij(g) compact modulo center3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal2 π supercuspidal: aij(g) compact modulo center3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case

1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal2 π supercuspidal: aij(g) compact modulo center3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations

2 Casselman: Every irreducible representation appears inparabolic induction

3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal2 π supercuspidal: aij(g) compact modulo center3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction

3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Discrete series dissonance

Discrete series

π discrete series: aij(g) ∈ L2(G/Z )

p-adic case1 Many discrete series are supercuspidal2 π supercuspidal: aij(g) compact modulo center3 π does not appear in any parabolic induction4 π induced from a compact open subgroup

real case1 There are no supercuspidal representations2 Casselman: Every irreducible representation appears in

parabolic induction3 There are no compact open subgroups

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory

1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ

→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)

→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}

Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Real discrete series

Harish-Chandra parameterization

1 {π discrete} H−C←→ {(S,B, θ)}/G(R)

2 S ⊂ G elliptic max torus, S ⊂ B complex Borel subgroup,θ : S(R)→ C×, dθ is B-dominant

3 Θπ(s) = (−1)q(G)∑

w∈N(S,G)(R)/S(R)

θ(γw )∏α>0(1−α(γw )−1)

Highest weight theory1 π algebraic irrep of G(C)↔ {(S,B, θ)}/G(C)

2 Θπ(s) =∑

w∈N(S,G)(C)/S(C)

θ(γw )∏α>0(1−α(γw )−1)

Local Langlands correspondence

Langlands: ϕ→ (S,B, θ)/G(C)→ {π1, . . . , πk}Θπ1 + · · ·+ Θπk conjugation invariant under G(C)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side

1 γ ∈ G(F )rs, Oγ(f ) =∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs,

Oγ(f ) =∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f ,

SOγ(f ) =∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗,

Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ),

Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G,

Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk}

↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ,

invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G,

Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Endoscopy: G(F )-conjugacy vs. G(F )-conjugacy

Geometric side1 γ ∈ G(F )rs, Oγ(f ) =

∫γG(F ) f , SOγ(f ) =

∫γG(F )∩G(F ) f

2 γG(F ) ∩G(F ) =⋃

a∈H1(Γ,Tγ) aγG(F )

3 Fourier inversion: κ ∈ H1(Γ,Tγ)∗, Oκγ =

∑a κ(a)Oaγ

4 Gκ ⊂ G, γκ ∈ Gκ(F ), Oκγ,G(f ) = ∆(γκ, γ)SOγκ,Gκ(fκ)

Spectral side

1 ϕ : Γp → G, Πϕ(G) = {π1, . . . , πk} ↔ Irr(Sϕ)

2 SΘϕ =∑

π∈Πϕ(G) Θπ, invariant under G(F )

3 Fourier inversion: s ∈ Sϕ, Θsϕ =

∑π∈Πϕ(G) ρπ(s)Θπ

4 Gs ⊂ G, Θsϕ,G(f ) = SΘϕ,Gs (fs)

Tasho Kaletha Local Langlands Correspondence

Supercuspidal representations

Yu’s construction 2001

(G0 ⊂ G1 ⊂ · · · ⊂ Gd = G)

π−1(φ0, φ1, . . . , φd )

J.K.Yu−−−→ {irred. s.c reps of G(F )}

Properties1 Kim 2007: Surjective for p >> 02 Hakim-Murnaghan 2008: Fibers as equivalence classes.3 Adler-DeBacker-Spice 2008++: Character formula.4 Fintzen 2018: Surjective for p - |W | and in positive

characteristic.

Tasho Kaletha Local Langlands Correspondence

Supercuspidal representations

Yu’s construction 2001

(G0 ⊂ G1 ⊂ · · · ⊂ Gd = G)

π−1(φ0, φ1, . . . , φd )

J.K.Yu−−−→ {irred. s.c reps of G(F )}

Properties1 Kim 2007: Surjective for p >> 02 Hakim-Murnaghan 2008: Fibers as equivalence classes.3 Adler-DeBacker-Spice 2008++: Character formula.4 Fintzen 2018: Surjective for p - |W | and in positive

characteristic.

Tasho Kaletha Local Langlands Correspondence

Supercuspidal representations

Yu’s construction 2001

(G0 ⊂ G1 ⊂ · · · ⊂ Gd = G)

π−1(φ0, φ1, . . . , φd )

J.K.Yu−−−→ {irred. s.c reps of G(F )}

Properties

1 Kim 2007: Surjective for p >> 02 Hakim-Murnaghan 2008: Fibers as equivalence classes.3 Adler-DeBacker-Spice 2008++: Character formula.4 Fintzen 2018: Surjective for p - |W | and in positive

characteristic.

Tasho Kaletha Local Langlands Correspondence

Supercuspidal representations

Yu’s construction 2001

(G0 ⊂ G1 ⊂ · · · ⊂ Gd = G)

π−1(φ0, φ1, . . . , φd )

J.K.Yu−−−→ {irred. s.c reps of G(F )}

Properties1 Kim 2007: Surjective for p >> 0

2 Hakim-Murnaghan 2008: Fibers as equivalence classes.3 Adler-DeBacker-Spice 2008++: Character formula.4 Fintzen 2018: Surjective for p - |W | and in positive

characteristic.

Tasho Kaletha Local Langlands Correspondence

Supercuspidal representations

Yu’s construction 2001

(G0 ⊂ G1 ⊂ · · · ⊂ Gd = G)

π−1(φ0, φ1, . . . , φd )

J.K.Yu−−−→ {irred. s.c reps of G(F )}

Properties1 Kim 2007: Surjective for p >> 02 Hakim-Murnaghan 2008: Fibers as equivalence classes.

3 Adler-DeBacker-Spice 2008++: Character formula.4 Fintzen 2018: Surjective for p - |W | and in positive

characteristic.

Tasho Kaletha Local Langlands Correspondence

Supercuspidal representations

Yu’s construction 2001

(G0 ⊂ G1 ⊂ · · · ⊂ Gd = G)

π−1(φ0, φ1, . . . , φd )

J.K.Yu−−−→ {irred. s.c reps of G(F )}

Properties1 Kim 2007: Surjective for p >> 02 Hakim-Murnaghan 2008: Fibers as equivalence classes.3 Adler-DeBacker-Spice 2008++: Character formula.

4 Fintzen 2018: Surjective for p - |W | and in positivecharacteristic.

Tasho Kaletha Local Langlands Correspondence

Supercuspidal representations

Yu’s construction 2001

(G0 ⊂ G1 ⊂ · · · ⊂ Gd = G)

π−1(φ0, φ1, . . . , φd )

J.K.Yu−−−→ {irred. s.c reps of G(F )}

Properties1 Kim 2007: Surjective for p >> 02 Hakim-Murnaghan 2008: Fibers as equivalence classes.3 Adler-DeBacker-Spice 2008++: Character formula.4 Fintzen 2018: Surjective for p - |W | and in positive

characteristic.

Tasho Kaletha Local Langlands Correspondence

Discrete series harmony (K. 2015)

Regular real discrete series

{π reg. d.s. of G(R)} ↔ {(S, θ)}/G(R)

Regular supercuspidal representations

{π reg. s.c. of G(Qp)} ↔ {(S, θ)}/G(Qp)

Character formula

Θπ(γ) = e(G)ε(X ∗(S)C − X ∗(T )C,Λ)∑

w∈N(S,G)(F )/S(F )

∆absII (γw )θ(γw )

F = Qp, γ ∈ S(F ) shallow,or F = R, γ ∈ S(F ), recovers H-C formula!

Tasho Kaletha Local Langlands Correspondence

Discrete series harmony (K. 2015)

Regular real discrete series

{π d.s. of G(R)} ↔ {(S,B, θ)}/G(R)

Regular supercuspidal representations

{π reg. s.c. of G(Qp)} ↔ {(S, θ)}/G(Qp)

Character formula

Θπ(γ) = e(G)ε(X ∗(S)C − X ∗(T )C,Λ)∑

w∈N(S,G)(F )/S(F )

∆absII (γw )θ(γw )

F = Qp, γ ∈ S(F ) shallow,or F = R, γ ∈ S(F ), recovers H-C formula!

Tasho Kaletha Local Langlands Correspondence

Discrete series harmony (K. 2015)

Regular real discrete series

{π reg. d.s. of G(R)} ↔ {(S, θ)}/G(R)

Regular supercuspidal representations

{π reg. s.c. of G(Qp)} ↔ {(S, θ)}/G(Qp)

Character formula

Θπ(γ) = e(G)ε(X ∗(S)C − X ∗(T )C,Λ)∑

w∈N(S,G)(F )/S(F )

∆absII (γw )θ(γw )

F = Qp, γ ∈ S(F ) shallow,or F = R, γ ∈ S(F ), recovers H-C formula!

Tasho Kaletha Local Langlands Correspondence

Discrete series harmony (K. 2015)

Regular real discrete series

{π reg. d.s. of G(R)} ↔ {(S, θ)}/G(R)

Regular supercuspidal representations

{π reg. s.c. of G(Qp)} ↔ {(S, θ)}/G(Qp)

Character formula

Θπ(γ) = e(G)ε(X ∗(S)C − X ∗(T )C,Λ)∑

w∈N(S,G)(F )/S(F )

∆absII (γw )θ(γw )

F = Qp, γ ∈ S(F ) shallow,or F = R, γ ∈ S(F ), recovers H-C formula!

Tasho Kaletha Local Langlands Correspondence

Discrete series harmony (K. 2015)

Regular real discrete series

{π reg. d.s. of G(R)} ↔ {(S, θ)}/G(R)

Regular supercuspidal representations

{π reg. s.c. of G(Qp)} ↔ {(S, θ)}/G(Qp)

Character formula

Θπ(γ) = e(G)ε(X ∗(S)C − X ∗(T )C,Λ)∑

w∈N(S,G)(F )/S(F )

∆absII (γw )θ(γw )

F = Qp, γ ∈ S(F ) shallow,or F = R, γ ∈ S(F ), recovers H-C formula!

Tasho Kaletha Local Langlands Correspondence

Discrete series harmony (K. 2015)

Regular real discrete series

{π reg. d.s. of G(R)} ↔ {(S, θ)}/G(R)

Regular supercuspidal representations

{π reg. s.c. of G(Qp)} ↔ {(S, θ)}/G(Qp)

Character formula

Θπ(γ) = e(G)ε(X ∗(S)C − X ∗(T )C,Λ)∑

w∈N(S,G)(F )/S(F )

∆absII (γw )θ(γw )

F = Qp, γ ∈ S(F ) shallow,or F = R, γ ∈ S(F ), recovers H-C formula!

Tasho Kaletha Local Langlands Correspondence

Discrete series harmony (K. 2015)

Regular real discrete series

{π reg. d.s. of G(R)} ↔ {(S, θ)}/G(R)

Regular supercuspidal representations

{π reg. s.c. of G(Qp)} ↔ {(S, θ)}/G(Qp)

Character formula

Θπ(γ) = e(G)ε(X ∗(S)C − X ∗(T )C,Λ)∑

w∈N(S,G)(F )/S(F )

∆absII (γw )θ(γw )

F = Qp, γ ∈ S(F ) shallow,

or F = R, γ ∈ S(F ), recovers H-C formula!

Tasho Kaletha Local Langlands Correspondence

Discrete series harmony (K. 2015)

Regular real discrete series

{π reg. d.s. of G(R)} ↔ {(S, θ)}/G(R)

Regular supercuspidal representations

{π reg. s.c. of G(Qp)} ↔ {(S, θ)}/G(Qp)

Character formula

Θπ(γ) = e(G)ε(X ∗(S)C − X ∗(T )C,Λ)∑

w∈N(S,G)(F )/S(F )

∆absII (γw )θ(γw )

F = Qp, γ ∈ S(F ) shallow,or F = R, γ ∈ S(F ),

recovers H-C formula!

Tasho Kaletha Local Langlands Correspondence

Discrete series harmony (K. 2015)

Regular real discrete series

{π reg. d.s. of G(R)} ↔ {(S, θ)}/G(R)

Regular supercuspidal representations

{π reg. s.c. of G(Qp)} ↔ {(S, θ)}/G(Qp)

Character formula

Θπ(γ) = e(G)ε(X ∗(S)C − X ∗(T )C,Λ)∑

w∈N(S,G)(F )/S(F )

∆absII (γw )θ(γw )

F = Qp, γ ∈ S(F ) shallow,or F = R, γ ∈ S(F ), recovers H-C formula!

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular

↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete

↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Supercuspidal Local Langlands Correspondence

Assume p - |W |.

The regular case, K. 2015

1 ϕ : WF → G discrete,regular ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ abelian

The general case, K. in progress

1 ϕ : WF → G discrete ↔ Πϕ(G)

2 Πϕ(G)↔ Irr(Sϕ)

3 Sϕ no longer abelian, structure of Πϕ(G) more complex

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Regular case

From ϕ : WF → LG discrete and regular we obtain canonically

1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function

Θ(γ) = “ε(X ∗(S)C − X ∗(T )C,Λ)∆absII (γw )θ(γw )′′

Each j : S → G provides unique irrep πj of G(F ) by

Θπj = e(G)∑

w∈N(jS,G)(F )/jS(F )

Θ(γw ).

The L-packet, together with internal structure:1 Πϕ(G) = {πj |j : S → G}2 Sϕ = SΓ ↔ H1(Γ,S) y {j : S → G}

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Regular case

From ϕ : WF → LG discrete and regular we obtain canonically1 S algebraic torus, with a family of embeddings j : S → G

2 Θ : S(F )→ C function

Θ(γ) = “ε(X ∗(S)C − X ∗(T )C,Λ)∆absII (γw )θ(γw )′′

Each j : S → G provides unique irrep πj of G(F ) by

Θπj = e(G)∑

w∈N(jS,G)(F )/jS(F )

Θ(γw ).

The L-packet, together with internal structure:1 Πϕ(G) = {πj |j : S → G}2 Sϕ = SΓ ↔ H1(Γ,S) y {j : S → G}

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Regular case

From ϕ : WF → LG discrete and regular we obtain canonically1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function

Θ(γ) = “ε(X ∗(S)C − X ∗(T )C,Λ)∆absII (γw )θ(γw )′′

Each j : S → G provides unique irrep πj of G(F ) by

Θπj = e(G)∑

w∈N(jS,G)(F )/jS(F )

Θ(γw ).

The L-packet, together with internal structure:1 Πϕ(G) = {πj |j : S → G}2 Sϕ = SΓ ↔ H1(Γ,S) y {j : S → G}

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Regular case

From ϕ : WF → LG discrete and regular we obtain canonically1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function

Θ(γ) = “ε(X ∗(S)C − X ∗(T )C,Λ)∆absII (γw )θ(γw )′′

Each j : S → G provides unique irrep πj of G(F ) by

Θπj = e(G)∑

w∈N(jS,G)(F )/jS(F )

Θ(γw ).

The L-packet, together with internal structure:1 Πϕ(G) = {πj |j : S → G}2 Sϕ = SΓ ↔ H1(Γ,S) y {j : S → G}

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Regular case

From ϕ : WF → LG discrete and regular we obtain canonically1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function

Θ(γ) = “ε(X ∗(S)C − X ∗(T )C,Λ)∆absII (γw )θ(γw )′′

Each j : S → G provides unique irrep πj of G(F ) by

Θπj = e(G)∑

w∈N(jS,G)(F )/jS(F )

Θ(γw ).

The L-packet, together with internal structure:1 Πϕ(G) = {πj |j : S → G}2 Sϕ = SΓ ↔ H1(Γ,S) y {j : S → G}

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Regular case

From ϕ : WF → LG discrete and regular we obtain canonically1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function

Θ(γ) = “ε(X ∗(S)C − X ∗(T )C,Λ)∆absII (γw )θ(γw )′′

Each j : S → G provides unique irrep πj of G(F ) by

Θπj = e(G)∑

w∈N(jS,G)(F )/jS(F )

Θ(γw ).

The L-packet, together with internal structure:

1 Πϕ(G) = {πj |j : S → G}2 Sϕ = SΓ ↔ H1(Γ,S) y {j : S → G}

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Regular case

From ϕ : WF → LG discrete and regular we obtain canonically1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function

Θ(γ) = “ε(X ∗(S)C − X ∗(T )C,Λ)∆absII (γw )θ(γw )′′

Each j : S → G provides unique irrep πj of G(F ) by

Θπj = e(G)∑

w∈N(jS,G)(F )/jS(F )

Θ(γw ).

The L-packet, together with internal structure:1 Πϕ(G) = {πj |j : S → G}

2 Sϕ = SΓ ↔ H1(Γ,S) y {j : S → G}

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Regular case

From ϕ : WF → LG discrete and regular we obtain canonically1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function

Θ(γ) = “ε(X ∗(S)C − X ∗(T )C,Λ)∆absII (γw )θ(γw )′′

Each j : S → G provides unique irrep πj of G(F ) by

Θπj = e(G)∑

w∈N(jS,G)(F )/jS(F )

Θ(γw ).

The L-packet, together with internal structure:1 Πϕ(G) = {πj |j : S → G}2 Sϕ = SΓ ↔ H1(Γ,S) y {j : S → G}

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Singular case

Let ϕ : WF → LG be discrete, not assumed regular.

As before:1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function3 πj for each j : S → G

First big difference: πj is reducible!Πϕ(G) = {irr. const. πj |j : S → G}

Second big difference: Sϕ no longer abelian!

Main Challenge: Construct Irr(Sϕ)↔ Πϕ(G)

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Singular case

Let ϕ : WF → LG be discrete, not assumed regular.As before:

1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function3 πj for each j : S → G

First big difference: πj is reducible!Πϕ(G) = {irr. const. πj |j : S → G}

Second big difference: Sϕ no longer abelian!

Main Challenge: Construct Irr(Sϕ)↔ Πϕ(G)

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Singular case

Let ϕ : WF → LG be discrete, not assumed regular.As before:1 S algebraic torus, with a family of embeddings j : S → G

2 Θ : S(F )→ C function3 πj for each j : S → G

First big difference: πj is reducible!Πϕ(G) = {irr. const. πj |j : S → G}

Second big difference: Sϕ no longer abelian!

Main Challenge: Construct Irr(Sϕ)↔ Πϕ(G)

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Singular case

Let ϕ : WF → LG be discrete, not assumed regular.As before:1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function

3 πj for each j : S → GFirst big difference: πj is reducible!

Πϕ(G) = {irr. const. πj |j : S → G}Second big difference: Sϕ no longer abelian!

Main Challenge: Construct Irr(Sϕ)↔ Πϕ(G)

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Singular case

Let ϕ : WF → LG be discrete, not assumed regular.As before:1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function3 πj for each j : S → G

First big difference: πj is reducible!Πϕ(G) = {irr. const. πj |j : S → G}

Second big difference: Sϕ no longer abelian!

Main Challenge: Construct Irr(Sϕ)↔ Πϕ(G)

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Singular case

Let ϕ : WF → LG be discrete, not assumed regular.As before:1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function3 πj for each j : S → G

First big difference: πj is reducible!

Πϕ(G) = {irr. const. πj |j : S → G}Second big difference: Sϕ no longer abelian!

Main Challenge: Construct Irr(Sϕ)↔ Πϕ(G)

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Singular case

Let ϕ : WF → LG be discrete, not assumed regular.As before:1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function3 πj for each j : S → G

First big difference: πj is reducible!Πϕ(G) = {irr. const. πj |j : S → G}

Second big difference: Sϕ no longer abelian!

Main Challenge: Construct Irr(Sϕ)↔ Πϕ(G)

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Singular case

Let ϕ : WF → LG be discrete, not assumed regular.As before:1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function3 πj for each j : S → G

First big difference: πj is reducible!Πϕ(G) = {irr. const. πj |j : S → G}

Second big difference: Sϕ no longer abelian!

Main Challenge: Construct Irr(Sϕ)↔ Πϕ(G)

Tasho Kaletha Local Langlands Correspondence

Construction of LLC: Singular case

Let ϕ : WF → LG be discrete, not assumed regular.As before:1 S algebraic torus, with a family of embeddings j : S → G2 Θ : S(F )→ C function3 πj for each j : S → G

First big difference: πj is reducible!Πϕ(G) = {irr. const. πj |j : S → G}

Second big difference: Sϕ no longer abelian!

Main Challenge: Construct Irr(Sϕ)↔ Πϕ(G)

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

Reductions

Understanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj

of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field

1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],

reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group

2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈Y (2)

Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈W (S,G)(k)θ

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈W (S,G)(k)θ

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈W (S,G)(k)θ

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈W (S,G)(k)θ

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field

1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈ Aut(S,G)(k)θ

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field

1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈ Aut(S,G)(k)θ

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well

2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈ Aut(S,G)(k)θ

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Geometric intertwining operators

ReductionsUnderstanding the structure of πj of depth zero

Finite field1 Lusztig:W (S,G)(k)∗θy[H∗(YB, Ql)θ],reminiscent of R-group2 Construct In : H∗(YB)θ → H∗(YB)θ for n ∈ Aut(S,G)(k)θ

Y (2)Bn,B

}} ""

BDR 2017 Y (2)B,FBn

{{ ""YB YBn,B // YB,FBnoo YBn

nmm

3 As in classical case: In don’t compose well

p-adic field1 The In can be normalized to compose well2 [πj ]↔ Irr(N(S,G)(F )θ, θ)

3 Sϕ ↔⋃

j,G′ N(jS,G′)(F )θ

Tasho Kaletha Local Langlands Correspondence

Speculation: Character formula via fixed-point formula

Real discrete series1 Langlands,Schmid 1960-1970: π d.s. of G(R) can be

found in L2-cohomology of the flag manifold2 Hochs, Wang 2017: Character computed via Atiyah-Singer

fixed point formula for non-compact domains

Supercuspidal representations1 Expect to find supercuspidal representations in l-adic

cohomology of local Shtuka spaces2 Can we compute the character using a generalized

Lefschetz fixed-point formula?3 K.-Weinstein 2017: Partial results.

Tasho Kaletha Local Langlands Correspondence

Speculation: Character formula via fixed-point formula

Real discrete series

1 Langlands,Schmid 1960-1970: π d.s. of G(R) can befound in L2-cohomology of the flag manifold

2 Hochs, Wang 2017: Character computed via Atiyah-Singerfixed point formula for non-compact domains

Supercuspidal representations1 Expect to find supercuspidal representations in l-adic

cohomology of local Shtuka spaces2 Can we compute the character using a generalized

Lefschetz fixed-point formula?3 K.-Weinstein 2017: Partial results.

Tasho Kaletha Local Langlands Correspondence

Speculation: Character formula via fixed-point formula

Real discrete series1 Langlands,Schmid 1960-1970: π d.s. of G(R) can be

found in L2-cohomology of the flag manifold

2 Hochs, Wang 2017: Character computed via Atiyah-Singerfixed point formula for non-compact domains

Supercuspidal representations1 Expect to find supercuspidal representations in l-adic

cohomology of local Shtuka spaces2 Can we compute the character using a generalized

Lefschetz fixed-point formula?3 K.-Weinstein 2017: Partial results.

Tasho Kaletha Local Langlands Correspondence

Speculation: Character formula via fixed-point formula

Real discrete series1 Langlands,Schmid 1960-1970: π d.s. of G(R) can be

found in L2-cohomology of the flag manifold2 Hochs, Wang 2017: Character computed via Atiyah-Singer

fixed point formula for non-compact domains

Supercuspidal representations1 Expect to find supercuspidal representations in l-adic

cohomology of local Shtuka spaces2 Can we compute the character using a generalized

Lefschetz fixed-point formula?3 K.-Weinstein 2017: Partial results.

Tasho Kaletha Local Langlands Correspondence

Speculation: Character formula via fixed-point formula

Real discrete series1 Langlands,Schmid 1960-1970: π d.s. of G(R) can be

found in L2-cohomology of the flag manifold2 Hochs, Wang 2017: Character computed via Atiyah-Singer

fixed point formula for non-compact domains

Supercuspidal representations1 Expect to find supercuspidal representations in l-adic

cohomology of local Shtuka spaces2 Can we compute the character using a generalized

Lefschetz fixed-point formula?3 K.-Weinstein 2017: Partial results.

Tasho Kaletha Local Langlands Correspondence

Speculation: Character formula via fixed-point formula

Real discrete series1 Langlands,Schmid 1960-1970: π d.s. of G(R) can be

found in L2-cohomology of the flag manifold2 Hochs, Wang 2017: Character computed via Atiyah-Singer

fixed point formula for non-compact domains

Supercuspidal representations

1 Expect to find supercuspidal representations in l-adiccohomology of local Shtuka spaces

2 Can we compute the character using a generalizedLefschetz fixed-point formula?

3 K.-Weinstein 2017: Partial results.

Tasho Kaletha Local Langlands Correspondence

Speculation: Character formula via fixed-point formula

Real discrete series1 Langlands,Schmid 1960-1970: π d.s. of G(R) can be

found in L2-cohomology of the flag manifold2 Hochs, Wang 2017: Character computed via Atiyah-Singer

fixed point formula for non-compact domains

Supercuspidal representations1 Expect to find supercuspidal representations in l-adic

cohomology of local Shtuka spaces

2 Can we compute the character using a generalizedLefschetz fixed-point formula?

3 K.-Weinstein 2017: Partial results.

Tasho Kaletha Local Langlands Correspondence

Speculation: Character formula via fixed-point formula

Real discrete series1 Langlands,Schmid 1960-1970: π d.s. of G(R) can be

found in L2-cohomology of the flag manifold2 Hochs, Wang 2017: Character computed via Atiyah-Singer

fixed point formula for non-compact domains

Supercuspidal representations1 Expect to find supercuspidal representations in l-adic

cohomology of local Shtuka spaces2 Can we compute the character using a generalized

Lefschetz fixed-point formula?

3 K.-Weinstein 2017: Partial results.

Tasho Kaletha Local Langlands Correspondence

Speculation: Character formula via fixed-point formula

Real discrete series1 Langlands,Schmid 1960-1970: π d.s. of G(R) can be

found in L2-cohomology of the flag manifold2 Hochs, Wang 2017: Character computed via Atiyah-Singer

fixed point formula for non-compact domains

Supercuspidal representations1 Expect to find supercuspidal representations in l-adic

cohomology of local Shtuka spaces2 Can we compute the character using a generalized

Lefschetz fixed-point formula?3 K.-Weinstein 2017: Partial results.

Tasho Kaletha Local Langlands Correspondence

Speculation: Beyond endoscopy and twisted Levis

Let G′ ⊂ G be an elliptic twisted Levi subgroup, ϕ : WF → LG′.Expect for γ ∈ G′(F ) elliptic that SΘϕ,G(γ) equals

e(G′)e(G)ε(X ∗(T )C − X ∗(T ′)C,Λ)∑

w∈W (G′,G)(F )

∆G/G′II (γw )SΘϕ,G′(γ

w ).

Tasho Kaletha Local Langlands Correspondence

Speculation: Beyond endoscopy and twisted Levis

Let G′ ⊂ G be an elliptic twisted Levi subgroup, ϕ : WF → LG′.

Expect for γ ∈ G′(F ) elliptic that SΘϕ,G(γ) equals

e(G′)e(G)ε(X ∗(T )C − X ∗(T ′)C,Λ)∑

w∈W (G′,G)(F )

∆G/G′II (γw )SΘϕ,G′(γ

w ).

Tasho Kaletha Local Langlands Correspondence

Speculation: Beyond endoscopy and twisted Levis

Let G′ ⊂ G be an elliptic twisted Levi subgroup, ϕ : WF → LG′.Expect for γ ∈ G′(F ) elliptic that SΘϕ,G(γ) equals

e(G′)e(G)ε(X ∗(T )C − X ∗(T ′)C,Λ)∑

w∈W (G′,G)(F )

∆G/G′II (γw )SΘϕ,G′(γ

w ).

Tasho Kaletha Local Langlands Correspondence