Gw renormalization of the electron phonon coupling

Post on 08-Jul-2015

365 views 3 download

description

I show how much GW corrections are important not only for the band structure but also in the calculation of the electron-phonon matrix elements. I present different examples and comparison with the experimental results.

Transcript of Gw renormalization of the electron phonon coupling

GW renormalization of the electron-phonon couplingelectron-phonon coupling

Claudio AttaccaliteInstitute Neel, Grenoble (France)

GW band structure Dyson equation: G = G

0+ G

0ΣG

GW approximation: Σ=iGW

G0W

0

evGW

scfQPGW

scfCOHSHEX+G0W

0

PPM

Contourdeformation

Electron-phonon coupling

For every single particleHamiltonian

(Kohn-Sham, Tight-binding, etc..)Second order expansion

Calculsabinitiodestructures électroniques et de leur dépendance en température avec la méthode GWPhd Thesis, Gabriel Antonius

Electron-phonon coupling

(3-fold)

LUMO

Changes in electronic structure

→ The frozen-phonon approach:

EPC ~ |slope|2

Structural deformation

Stepwise deformation

...an old story

More recently... RAMAN on graphene 1/2

RAMAN in graphene 2/2

K K'

ℏ q {

q

→ D-line dispersion

→ Double resonant RAMAN

I. Pócsik et al., J. Non­Cryst. Solids 227, 1083 (1998)P. H. Tan et al., Phys. Rev. B 66, 245410 (2002).

J. Maultzsch et al., Phys. Rev. B 70, 155403 (2004).

GW correction to the EPC

Pq=4N k

∑k∣D kq , k∣

2

k ,−kq ,

Impact of the electron­electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite

Michele Lazzeri, Claudio Attaccalite, Ludger Wirtz, and Francesco MauriPhys. Rev. B 78, 081406(R) (2008)

Diagrammatic approach

Electron and phononrenormalization

of the EPC vertex

Dirac massless fermions+

Renormalization Group

Interplay of Coulomb and electron­phonon interactions in grapheneD. M. Basko and I. L. Aleiner

Phys. Rev. B 77, 041409(R) (2008)

EPC in fullerenes

LDA 73 meVevGW 101 meVExp. 107 meV

DFT: J. Laflamme-Janssen, PRB 2010;GW: C. Faber, PRB 84, 155104, 2011; Exp: Wang, JCP 2005; Hands, PRB 2008;

(3-fold)

LUMO

ev-GW

DFT-LDA

Electron-phonon potential

Electron–phonon coupling and charge­transfer excitations in organic systems from many­body perturbation theory

C. Faber et al.,  J. of Material Science, 47, 7472(2012) 

Bismuthates, Chloronitrides and other high-Tc superconductors

Correlation­Enhanced Electron­Phonon Coupling: Applications of GW and Screened Hybrid Functional to Bismuthates, Chloronitrides, and Other High­Tc Superconductors

Z. P. Yin, A. Kutepov, and G. KotliarPhys. Rev. X 3, 021011 (2013)

Bismuthates, Chloronitrides and other high-Tc superconductors

critical temperature Tc

Correlation­Enhanced Electron­Phonon Coupling: Applications of GW and Screened Hybrid Functional to Bismuthates, Chloronitrides, and Other High­Tc Superconductors

Z. P. Yin, A. Kutepov, and G. KotliarPhys. Rev. X 3, 021011 (2013)

Diamond gap?

Effect of the Quantum Zero­Point Atomic Motion on the Optical and Electronic Properties of Diamond and Trans­PolyacetyleneElena Cannuccia and Andrea MariniPhys. Rev. Lett. 107, 255501(2011)

Electron­Phonon Renormalization of the Direct Band Gap of DiamondFeliciano Giustino, Steven G. Louie, and Marvin L. Cohen

Phys. Rev. Lett. 105, 265501 (2010)

GW renormalization of EPCand diamond gap

Many­Body Effects on the Zero­Point Renormalization of the Band StructureG. Antonius, S. Poncé, P. Boulanger, M. Côté, and X. Gonze

Phys. Rev. Lett. 112, 215501 (2014)

New physics appears...

EPC for the K­A  phonon aquires a strong doping dependence′

Doped graphene as tunable electron­phonon coupling materialC. Attaccalite et al.,  Nanoletters, 10, 1172(2010) 

Experimental confirmation

Raman signature of electron-electron correlation in chemically doped few-layer graphene

Phys. Rev. B 83, 241401(R) (2011)

Matteo Bruna and Stefano Borini

Pressure-mediated doping in graphene

Nanoletters, 11, 3564 (2011)

J. Nicolle,D. Machon, P. Poncharal,O. Pierre-Louisand Alfonso San-Miguel

Simplified approach

∂ΣGW

∂uq ν≃∂ ΣCOHSEX

∂uq ν

∂GW∂uqν

≃( ∂G∂uq ν )W

2) Constant screening respect to the phonon displacement

1) Static screening (COHSEX) Inspired by the Bethe-Salpeter

equation

The simplified approach works!

Approximation to the GW self-energy electron-phonon coupling gradients

C. Faber et al.Physical Review B 91 (15), 155109(2015)

Conclusions

1)  You can get more from your GW calculationsJust move the atoms!!!

2)  The new EPC matrix elements improve:       Raman, phonons, band­gap renomalization, T

3)  New physics can appear! 

4)  If calculations are too heavy ….                    use our simplified approach 

Acknowledgments

Xavier Blase

Paul Boulanger

Elena Cannuccia

Ivan Duchemin

CarinaFaber

AlexanderGruneis Francesco

Mauri MicheleLazzeri

AngelRubio

LudgerWirtz

Bands renormalization

Frozen phonon approach

Recent Experimental evidences

A. Grüneis et al . Phys. Rev. B 80, 085423 (2009)

Phonon dispersions around the K point of graphite by inelastic x­ray scattering

Experimental phonon dispersion in bilayer graphene obtained by Raman 

spectroscopy

D. L. Mafra et al. Phys. Rev. B 80,  241414(R)(2009)⟨DK

2 ⟩F=166eV / A

⟨DK2⟩F=164eV / A GW

inelastic x­ray

Phonons dispersion of graphene

q =2

ℏq N f ∫BZ

d k

∑i , j∣gki ,k q , j

2∣k−k kq−f

describe the scattering of an electron from the band I to band j due to the phonon ν

gki ,kq , j =⟨ kq , j∣ V q∣k ,i⟩

..where the electron­phonon matrix element..

Has been always considered a constant with respect to the electron/hole doping

Electron-phonon coupling and doping