Field and Wave ElectromagneticField and Wave Electromagnetic Chapter10 Waveguides and Cavity...

Post on 18-Mar-2021

11 views 0 download

Transcript of Field and Wave ElectromagneticField and Wave Electromagnetic Chapter10 Waveguides and Cavity...

Field and Wave Electromagnetic

Chapter10

Waveguides and Cavity Resonators

Electromagnetic Theory 2 2

Introduction (1)

- TEM waves are not the only mode of guided waves - The three types of transmission lines (parallel-plate, two-wire, and coaxial) are not the only possible wave-guiding structur

* Waveguide

1( )

2

22( )s c

c

C LR G R

L C

R fR f

w w

α

α

π μσ

≅ + ∝

= = ∝

∴⇒

e. - Attenuation constant for loss line

Attenuation of TEM waves tends to increase monotonically with frequency prohibitively high in the microwave range.

0

Electromagnetic Theory 2 3

Introduction (2)

0

( 0, 0)z z

z z

E H

H E

= == ≠

- TEM waves :

- TM waves : transverse magnetic waves

- TE waves : transverse electric(TE) waves - single conductor wave guide : rectangular and cylindrical wave guide. - dielectric-slab waveguide : surface waves

Electromagnetic Theory 2 4

General Wave Behaviors along Uniform Guiding Structures (1)

* General wave behaviors along uniform g uiding structures- straight guiding structures with a uniform cross section.

- Assume that the waves propagate in the +z direction with a propagation constant

- For harmonic time dependence on z and t

for all field components :

jγ α β= +

( ) ( )z j t j t z z j t ze e e e eγ ω ω γ α ω β− − − −= =

Electromagnetic Theory 2 5

General Wave Behaviors along Uniform Guiding Structures (2)

0 ( )

0

( , , ; ) [ ( , ) ]

( , ) :

,

j t zE x y z t e E x y e

E x y

jwt z

ω γ

γ

−= ℜ

∂ ∂→ → − ,

∂ ∂

- For a cosine reference

where two-dimensional vector phasor

- in using a phasor representation

- In the charge-free dielectr

2

2

2 2

0

0,

( ) (xy z xy

E k E

H k H k

E E

ω με

∇ + =

∇ + = =

∇ = ∇ +∇ = ∇

2

2

2

ic region inside, Helmholtz's equations should be satisfied

where

- In Cartesian coordinates, rectangular wave guide

2

2 22) xyE E E

zγ∂

+ = ∇ +∂

2

Electromagnetic Theory 2 6

General Wave Behaviors along Uniform Guiding Structures (3)

2 2

2 2

2 2

2 2

2 2 2 2

( ) 0

( ) 0

( ) 0

( ) ( )( ) 0

( ) 0, ( ) 0

xy

xy

xy

xy x y z x y z

xy x x xy y y

E k E

H k H

E k E

xE yE zE k xE yE zE

E k E E k E

γ

γ

γ

γ

γ γ

∴ ∇ + + =

∇ + + =

∇ + + =

→ ∇ + + + + + + =

∇ + + = ∇ + + =

2

2

2

2

2 2

cf)

i.e

2 2

2 2

( ) 0xy z z

r xy

E k E

φ

γ∇ + + =

∇ ∇

2

The solution of above equations depends on the cross-sectional geometry and the boundary conditions

cf) instead of for waveguides with a circular cross section

Electromagnetic Theory 2 7

General Wave Behaviors along Uniform Guiding Structures (4)

0 00 0 0 0

0

z zy x y x

x

E j H H j E

E HE j H H j E

y y

E

ωμ ωε

γ ωμ γ ωε

γ

∇× = − ∇× =

∂ ∂+ = − + =

∂ ∂

∂− −

- Interrelationships among the six components in Cartesian coordinates

1 4

2 0 0

0 0 0

0 00 00 0

z zy x y

y yx xz z

yz

x z

y xx y z

E Hj H H j E

x x

E HE Hj H j E

x y x y

EE

x y z y z

E Ej H

x y z z xE EE E Ex

ωμ γ ωε

ωμ ωε

ωμ

∂= − − − =

∂ ∂∂ ∂∂ ∂

− = − − =∂ ∂ ∂ ∂

∂∂−

∂ ∂∂ ∂∂ ∂ ∂

= − −∂ ∂ ∂ ∂ ∂

∂ ∂−

5

3 6

cf)

x

y

z

z

j H

j H

j H

y

ez

γ

ωμωμ

ωμ

γ −

⎛ ⎞⎜ ⎟⎜ ⎟ ⎛ ⎞−⎜ ⎟ ⎜ ⎟

= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎜ ⎟⎜ ⎟∂⎝ ⎠

∂→ −

where and is surpressed

Electromagnetic Theory 2 8

General Wave Behaviors along Uniform Guiding Structures (5)

00 0

00 0

zy x

zx y

EE j H

y

HH j E

x

γ ωμ

γ ωε

∂+ = −

∂− − =

- Transverse component can be expressed in terms of longitudinal components. Ex) Combining 1 and 5

1 :

5 :

eliminati 0

00 2 0

02 0 0

0 02 2 0

0 00 2 2

2

)

1( )

y

zy x

zx y

z zx

z zx

E

Ej j E H

y

HH j E

x

E Hk H j

y x

E HH j h k

h y x

ωε γ ωε ω με

γ γ γ ωε

γ ωε γ

ωε γ

∂+ =

∂− − =

∂∂ ∂

+ = −∂ ∂

∂ ∂∴ = − − + =

∂ ∂

ng from 1,5

1' :

5' :

(

where 2γ+

Electromagnetic Theory 2 9

General Wave Behaviors along Uniform Guiding Structures (6)

0 00

2

0 00

2

0 00

2

0 00 2 2 2

2

1( )

1( )

1( )

1( )

z zx

z zy

z zx

z zy

x

E HH j

h y x

E

n

HH j

h x y

H EE j

h y x

H EE j h k

h

o

y

e

x

t

ωε γ

ωε γ

ωμ γ

ωμ γ γ

∂ ∂= − − +

∂ ∂

∂ ∂= − + +

∂ ∂

∂ ∂= − +

∂ ∂

∂ ∂= − − + = +

∂ ∂

- i.e

where

First, so lve 2 2

2 2

0

0

, , ,

y

xy

x y x y

E h E

H h H

H H E E

+ =

∇ + = and for longitudinal components

then find using above equation

Electromagnetic Theory 2 10

TEM Waves (1)

2

2 2

2

0, 0

0 0

0

z z

x y x y

TEM

TEM

E H

E E H H h

k

jk j

γ

γ ω με

= =

∴ = = = = =

+ =

= =

- for TEM waves

unless

- TEM waves exist only

where

or : propagation constant of a uniform plan

* TEM wave

( )

1p TEM k

ωμμε

= =

e wave

on a lossless transmission line.

- Phase velocity

Electromagnetic Theory 2 11

TEM Waves (2)

0

0

0

0

xTEM

y

TEM

yTEM

x

n

E jZ

H j

Z

EZ

te

H

o

γωμγ ωε

μ ηε

με

ΤΕΜ

ΤΕΜ

= = =

= =

= − = −

- Wave impedance from 2,4

is the same as the intrinsic impedance of the dielectric medium

1

TEM

H z EZ

∴ = ×

Electromagnetic Theory 2 12

TEM Waves (3)

B

B H

Why?

1. lines always close upon themselves

2. For TEM waves to exist, and lines would form closed loops in a t

* Single-conductor waveguides cannot support TEM waves.

c d

c

d

H dl I I

I

I

= +∫ i

ransverse plane.

3. By the Ampere's circuital law.

transverse plane

: conductor current

: displacement current

0cI =

4. Without an inner conductor

Electromagnetic Theory 2 13

TEM Waves (4)

0

0

0

z

d s

z

E

DI ds

tE

= →

∂= =

∂=

∫ i

5. For TEM wave, no longitudinal displacement current

cf) in the z direction

6. Therefore there can be no closed loops of magnetic field lines in any transverse plane

7. Assuming perfect conductors, a coaxial transmission line having an inner conductor can support TEM waves

8. When the conductors have losses, no longer TEM waves

Electromagnetic Theory 2 14

TM / TE Waves (1)

solvingsolving

For TE waves For TM waves

2 0 2 0

00

2

00

2

00

2

00

2

0

.

:

:

:

:

xy z z

z

zx

zy

zx

zy

E h E

for E

EjH

h y

EjH

h x

EE

h x

EE

h y

ωε

ωε

γ

γ

∇ + =

∂=

∂= −

∂∂

= −∂∂

= −∂

w ith proper

boundary conditions

0zH = 0zE =

2 2

00

2

00

2

00

2

00

2

0

.

:

:

:

:

xy z z

z

zx

zy

zx

zy

H h H

for H

HH

h x

HH

h y

HjE

h y

HjE

h x

γ

γ

ωμ

ωμ

∇ + =

∂= −

∂∂

= −∂

∂= −

∂=

w ith proper

boundary conditions

Electromagnetic Theory 2 15

TM / TE Waves (2)

0 0 0 02

0 0 0 0

00

0 0

ˆ ˆ( )

, , ,

)

,

T TM x y T z

x y x y

yxTM

y x

TM

E xE yE Eh

E E H H

EEZ

H H j

jcf Z

j

γ

γωε

ωμγ

γ

ω με

= + = − ∇

= = − =

② ③ ① ④

are given can be

determ ined from the wave impedance for the TM mode

from , and ,

for TM is not equal to

whic

1ˆ( )

TEM

TM

H z EZ

γ

∴ = ×

h is

0 0 0 02

0 0

0 0

00

0 0

ˆ ˆ( )

,

,

)

ˆ( )

ˆ( )

T TE x y T z

x y

x y

yxTE

y x

TE TM

TE

TE

H xH yH Hh

E E

H H

EE jZ

H H

cf Z Zj

E Z z H

Z H z

γ

ωμγ

γωε

= + = − ∇

= = − =

≠ =

∴ = − ×

= ×

⑥ ⑦ ⑤ ⑧

sim ilar way, can be

obtained from

from , and ,

Electromagnetic Theory 2 16

TM / TE Waves (3)

2 0 2 0 0xy z zE h E

h

h

h

∇ + =

⇒⇒

solution of

for a given boundary conditionare possible only for discretevalues of infinity of 's but solutions are not possible for all values of eigenvalues or characteri

2 2 2

2 2

2 2

h k

h k

h

γ

γ

ω με

= +

= −

= −

stic values

2 0 2 0 0xy z zH h H∇ + =

e igen va lues

Electromagnetic Theory 2 17

TM / TE Waves (4)

2 2

2

0,

:2

1 ( )

c

c

c

for

h

hf

f

fh

f

γ

ω με

π με

γ

=

=

=

= −

cutoff frequency

cf) The value of for a particular

mode in a waveguide depends on the eigenvalue of this mode

2 0 2 0 0xy z zH h H∇ + =

e igen va lues

Electromagnetic Theory 2 18

TM / TE Waves (5)

2

2

2 2

2

2

1 ( )

( ) 1

1 ( )

1 ( )

1

c

cc

c

fh

f

ff f

f

h

hj jk

k

fjk

f

k

γ

ω με γ

γ β

β

β

= −

> >

⇒ >

= = −

= −

= −

(a) or

in this range, and is imaginary

propagation mode with a phase constant

2( ) (rad/m)cf

f

Electromagnetic Theory 2 19

TM / TE Waves (6)

2

22 2

22

2 2 2 2 2

2 2 2

2 2 1

1 ( )

1 1(1 ( ) )

1 1 1 1( )

1 1 1

g

c

cc

c

g

c

g c

g c

u

k ff f

f

u

f

f

f

ff

u f

π λ πλ λ λβ με

λ

λ λ

λ λ λ λ

λ λ λ

= = > = = =−

=

= −

= − = −

∴ + =

- Guided wavelength

where

let cutoff wavelength,

then

Electromagnetic Theory 2 20

TM / TE Waves (7)

21 ( )

gp

c

uu u u

f

f

λωβ λ

= = = >−

- Phase velocity

cf) 1. Phase velocity of guided wave is faster than that of unbounded medium. 2. Phase velocity depends on frequency so that single conductor waveguides are dispersive transmission systems

Electromagnetic Theory 2 21

TM / TE Waves (8)

2

2

2 2

11 ( )

( 1 ( ) [2 1 ( ) ]

(2 )

1 (

cg

g

g p

c c

c

fu u u u

d d f

u u u

f fd k d f

f fd

d d d f

fd f

df u f

λβ ω λ

π μεβω ω π

= = − = </

∴ =

− −= =

= −

- Group velocity

cf)

2

2

)

1 1

1 ( )cu f

f

=−

Electromagnetic Theory 2 22

TM / TE Waves (9)2

2 2

2

1 ( )

1 ( ) 1 ( )

1 ( )

c

TM

c c

TE

c

fjk

fZ

j j

f f

f f

j jZ

fjk

f

γωε ωε

μ ηε

ωμ ωμγ

−= =

= − = −

= =−

-

; purely resistive and less than the intrinsic impedance of the dielectric medium

-

2 2

1

1 ( ) 1 ( )c cf f

f f

μ ηε

= =− −

; purely resistive larger than the intrinsic impedance of the dielectric medium

Electromagnetic Theory 2 23

TM / TE Waves (10)2

2

( ) 1

1 ( )

z

cc

c

z z

ff f

f

fh

f

e eγ α

γ α

− −

< <

= = −

∴ = ⇒

(b) or

: real number

wave diminishes rapidly with and is said to be evanescent waveguide : high-pass filt

2

2

1 ( )

1 ( ) ,cTM c

c

TE

fh

f h fZ j f f

j j f

jZ

γωε ωε ωε

ωμγ

−= = = − − <

⇒ ⇒

= =

er

purely reactive no power flow associated with evanescent mode

21 ( )

c

jf

hf

ωμ

− : purely reactive. no power flow.

Electromagnetic Theory 2 24

TM / TE Waves (11)

21 ( )c

u

ω β

ωωβω

= −

- diagram

Electromagnetic Theory 2 25

Parallel-Plate Waveguide (1)

( )

-

( 0)z

j t z

x

H

e ω γ

ε μ

=

1. Assuming and 2. Infinite in extent in the direction3. TM waves

4.

- Parallel plate waveguide can support TM and TE waves

as well as TEM waves

* TM waves between parallel plates

Electromagnetic Theory 2 26

Parallel-Plate Waveguide (2)0

2 02 0

2

2 2 2

0

0

( , ) ( ) -

( )( ) 0

( ) 0 0

( ) sin( )

zz z

zz

z

z n

n

E y z E y e x

d E yh E y

dy

h k

E y y y b

n y nE y A h

b bA

γ

γ

π π

−=

+ =

= +

= = =

∴ = =

(no variation along direction)

whereB.C.

at and

from

where depends on the strength of excitation of

the particular TM wave

Electromagnetic Theory 2 27

Parallel-Plate Waveguide (3)

00

2

00

2

00

2

00

2

2 2

( ) cos( )

( ) 0

( ) 0

( ) cos( )

( )

2

zx n

zy

zx

zy n

c

Ej j n yH y A

h y h b

EjH y

h x

EE y

h x

E n yE y A

h y h b

n

bn

fb

ωε ωε π

ωε

γ

γ γ π

πγ ω με

γμε

∂∴ = =

∂= − =

∂∂

= − =∂∂

= − = −∂

= −

= 0 ∴ =Cutoff frequency that makes

Electromagnetic Theory 2 28

Parallel-Plate Waveguide (4)

1 1

2 2

0

1

2

2

2

0

0

c

c

c

z

f TMb

f TMb

TM f

E

με

με

=

=

==∵

cf) for mode with n=1

for mode with n=2

cf) mode is the TEM mode with

- Dominant mode of the waveguide = the mode having the lowest cutoff frequency - For parallel plate waveguides, the dominant mode is the TEM mode

Electromagnetic Theory 2 29

Ex. 10-3(1)

ˆ ˆ ˆ ˆˆ ˆ( )x y z

x y z

dl xdx ydy zdz kE k xE yE zE

dx dy dzk

E E E

= + + = = + +

= = = ⇒

cf) Field line : the direction of the field in space

i.e.

field line

Electromagnetic Theory 2 30

Ex. 10-3(2)

1

( , ; 0)

( , ; 0)

( , ;0) cos( )sin

0

y

z

x

E y z tdyy z

dz E y x t

b yH y z A z

by y b

ωε π βπ

=∴ − =

=−

=

− = =

1

in the plane

For TM mode at t=0,

At and - There are surface currents because of a discontinuity in the tangential magnetic field. - There are surface charges because of the presence of a normal electric field

Electromagnetic Theory 2 31

Ex. 10-4 (1)

/ /11( , ) sin( ) ( )

2j z j y b j y b

z

AyE y z A e e e

b jβ π ππ − −= = −

1(a) A propagating TM wave = the superposition of two plane

waves bouncing back and forth obliquely between the two conducting platesproof>

( / ) ( / )1 [ ]2

j z

j z y b j z y b

e

Ae e

j

β

β π β π

− − − += −1 2

Electromagnetic Theory 2 32

Ex. 10-4 (2)

z y

bz y

πβ

+ −

+ +

1 Term : A plane wave propagating obliquely in the and

directions with phase constants and

2 Term : A plane wave propagating obliquely in the and directions w

0 0 0 0

0 0

ˆ

ˆ ˆˆ ˆsin cos sin cos

ˆ ˆsin cos

ˆ ˆˆ ˆcos sin cos sin

x

i i i i i r r i r i

i i i i

i i i r i i

H xH

E yE zE E yE zE

yE zE

y z y z

θ θ θ θθ θ

β β θ β θ β β θ β θ1 1 1 1

= −

= − = − −= +

= + = − +

ith the same phase constants

Electromagnetic Theory 2 33

Ex. 10-4 (3)1 1 1cos cos sin

0

2 2 2 2

( , ) cos ( )

sin , cos

( ) ( )

cos 22

11,

2 2

0

i i ij y j y j zz i i

i i

i

i

E y z E e e e

b

b b

bb b

uf

b b

β θ β θ β θθπβ θ β β θ

π πβ β ω με

π λθ λβ

λλ με

θ

− −

1 1

1

1

= −

∴ = =

= − = −

= = ⇒ ≤

= = = ⇒

= ⇒

solution exists only for

at cutoff frequency

then waves bounce ba

2

-

-

2 .

cos sin 1 ( )

c c

c ci i

c g p

y

z

b f f

f fu

f u f

λ λ

λ λθ θλ λ

⇒ < = >

= = = = = −

1

ck and forth in the direction

and no propagation in the direction TM mode propagates only when or

Electromagnetic Theory 2 34

TE Waves between Parallel Plates (1)

2 02 0

2

0

00

2

0

0

0, 0

( )( ) 0

( , ) ( )

0

( )0 0

( ) cos( )

z

zz

zz z

zx

z

z n

Ex

d H yh H y

dy

H y z H y e

HjE

h y

dH yy y b

dy

n yH y B

b

γ

ωμ

π

∂= =

∴ + =

=

∂− = − =

= = =

∴ =

* TE waves

We note that

B.C.

i.e at and

Electromagnetic Theory 2 35

TE Waves between Parallel Plates (2)

00

2

00

2

00

2

00

2

2 2 2 2

( ) 0 ( 0)

( ) sin( )

( ) sin( )

( ) 0( 0)

( )

z Zx

zy n

zx n

z Zy

H HH y

h x x

H n yH y B

h y h b

Hj j n yE y B

h y h b

H HjE y

h x x

nh k

b

γ

γ γ π

ωμ ωμ π

ωμ

πγ ω με

∂ ∂∴ = − = =

∂ ∂∂

= − =∂

∂= − =

∂ ∂= = =

∂ ∂

⇒ = − = − ⇒

the same as that for TM waves

The cutoff frequency is0, 0 0y xn H E⇒ = = =

the sameFor and

Electromagnetic Theory 2 36

TE Waves between Parallel Plates (3)

0

01 10

01 10

)

)

)

cf TM TEM

cf TM TM

cf TM TM

=

0i.e, TE mode doesn't exist

or does not exist

or does exist

for the rectangular waveguide

00( , ) sin( )sin( )z

m x m yE x y E

a b

π π=

00( , ) cos( )cos( )z

m x m yH x y H

a b

π π=

Electromagnetic Theory 2 37

Energy-transport Velocity (1)

⇒⇒

* Energy-transport velocity - Wave guide high pass filter - Broadband signal 1. low frequency components may be below cutoff 2. high frequency components will travel widely different velocity - Energy-transport velocity : veloc

( )(m/s)

( )

z aven

av

z av avs

Pu

W

P P ds

=′

= ∫ i

ity at which energy propagates along a waveguide

: the time average power

Electromagnetic Theory 2 38

Energy-transport Velocity (2)

2

[( ) ( ) ]

1 ( )

[

(

av e av m avs

cen

W w w ds

fu u

f

w

′ = +

= −

∫ : the time average stored

energy per unit length

H.W] prove that

*

*

) ( )4

( ) ( )4

e av

m av

e E E

w e H H

ε

μ

= ℜ

= ℜ

i

i

Electromagnetic Theory 2 39

Energy-transport Velocity (3)2

2 2 22

* 2

22 2 2

2 20

2 22 2

2

2 2 2 2 22 20

0

2 220

( ) [sin ( ) cos ( )]4

( ) ( )

( ) [1 ]8 8

( ) ( ) cos ( )4

( ) ( )8 8

ˆ( )

cos (

e av n

b

e av n n

m av n

b

m av n n

b

z av av

b

n

n y n yw A

b h b

E E j j

b bw dy A k A

h h

n yw A

h bb b

w dy A k Ah h

P P zdy

Ah

ε π β π

β β β

ε β ε

μ ω ε π

μ εω ε

ωεβ

= +

⇒ − =

= + =

=

= =

=

=2

i i

i

cf)

22

)4 n

n y bdy A

b h

π ωεβ=

Electromagnetic Theory 2 40

Energy-transport Velocity (4)*

0 0* 0 0*

0 0*

2 22

22

1) ( )

21

ˆˆ( )2

1( ) ( )

2

cos ( )

( ) 1 ( )

av

y x z x

av y x

n

cen

cf P e E H

e zE H yE H

P z e E H

n yA

h b

fu u

k k k f

ωεβ π

ωβ ω β

= ℜ ×

= ℜ − +

= − ℜ

=2

= = = −

i

Electromagnetic Theory 2 41

Attenuation in Parallel-plate Waveguides (1)

( )

d c

LP z

α α α= +

=

* Attenuation in parallel-plate waveguide - Losses are very small -

For TEM mode cf) For a lossy transmission line the time-average power loss per unit length

22 2 2 20

02

0

2* 20

02

0

1[ ( ) ( ) ] ( )

2 2

1( ) [ ( ) ( )]

2 2

z

z

VI z R V z G R G Z e

Z

VP z e V z I z R e

Z

α

α

+ = +

= ℜ =

Dielectric losses

Ohmic losses

Electromagnetic Theory 2 42

Attenuation in Parallel-plate Waveguides (2)

2

00

0 0 0

0

( )( ) 2 ( )

( ) 1( )

2 ( ) 2

(2 2 2

L

L

d

P zP z P z

zP z

R G ZP z R

GR Z R

Gbwhere

bR

α

α

σ μ σα ηεωσ

ηω

∂− = =

∴ = = +

∴ = = =

⎛ =⎜⎜⎜ =⎜⎝

∵ for low loss conductor)

independent of frequency

Electromagnetic Theory 2 43

Attenuation in Parallel-plate Waveguides (3)

0

0

1

2

2

( )

cc

c

c

d c

d

R ff

R b

b bR

fR

f f

j

π εασ

μηω ω ε

π μω σ

ασε εω

∴ = = ∝

= =

=

>

= +

cf)

For TM mode to find dielectric losses, at

-

Electromagnetic Theory 2 44

Attenuation in Parallel-plate Waveguides (4)

2 2 1/ 2

2 2 2 2 1 1/ 2

2 2 2 2 1

2 2

[ (1 ) ( ) ]

( ) {1 ( ) ] }

( ) {1 ( ) ] }2

( )

j nj

b

n nj j

b b

n j nj

b bn

b

σ πγ ω μεωεπ πω με ωμσ ω με

π ωμσ πω με ω με

πωμσ ω με

= − −

= − − [ −

≅ − − [ −

− Assumption that

Electromagnetic Theory 2 45

Attenuation in Parallel-plate Waveguides (5)

2 2 2

2

2

2

2

( ) 1 ( )

1 ( )

11 ( )

21 ( )

c

c

c

cd

c

nf

b

n

b

f

f

fj j

ff

f

π π με

ωπω με ω μεω

ω με

σ μγ α β ω μεε

=

⇒ − = −

= −

∴ = + = + −−

For cutoff frequency

Electromagnetic Theory 2 46

Attenuation in Parallel-plate Waveguides (6)

2

2

0 0 *

0

2 2 2

0

2 1 ( )

1 ( )

( )

2 ( )

1( ) ( )( )

2

( ) cos ( ) ( )2

d

c

c

c

Lc

b

y x

bn n

f

f

f

f

P z

P z

P z w E H dy

bA bAw n ydy w b

n b n

σηα

β ω με

α

α

ωεβ π ωεβπ π

= ⇒−

= −

=

= −

= =2

We obtain decreases when frequency increases

and

To find

Electromagnetic Theory 2 47

Attenuation in Parallel-plate Waveguides (7)20

2 0 0

2

2

1( ) 2 ( )

2

( ) ( 0)

( ) 22

2 ( )1 ( )

2 1

( )[1 ( ) ]

L

L

sz s

n ns sz x

sc s

c

cs

c

c cc

c c c

P z w J R

bA bAw R J H y

n nP z R

RP z b f

bf

fR

f

b f f

f f

ωε ωεπ π

ωεαβ

η

π μσ

πμαη σ

=

= = = =

∴ = = =−

=

∴ =−

where

Electromagnetic Theory 2 48

Attenuation in Parallel-plate Waveguides (8)

0 0 *

0

2 2 2

0

20

20 2

22

2 2

:

1: ( ) ( )( )

2

( ) sin ( ) ( )2

1( ) 2 ( )

2

( 0)

2 2( )( )

2 ( )1 ( )

L

d

b

c x y

bn n

sx s

z z n s

s s cLc

c

P z w E H dy

bB bBw n ydy w b

n b n

P z w J R

w H y R wB R

R R fP z n

P z b b fbf

f

α

α

ωμβ π ωμβπ π

παωμβ

η

=

= =2

=

= = =

∴ = = =−

TE modes the same as TM

decreases monotonically as frequency increases

Electromagnetic Theory 2 49

Attenuation in Parallel-plate Waveguides (9)

Electromagnetic Theory 2 50

Homework

H.W10-2, 10-4, 10-5, 10-8, 10-9, 10-11, 10-14