Exclusive π 0 e lectroproduction in the resonance region.

Post on 12-Jan-2016

24 views 0 download

description

Exclusive π 0 e lectroproduction in the resonance region. Maurizio Ungaro, Kyungseon Joo , Nick Markov University of Connecticut Jefferson Laboratory for the CLAS collaboration. Outline. Introduction Experiment Overview Preliminary Results Summary. N* Program in CLAS. - PowerPoint PPT Presentation

Transcript of Exclusive π 0 e lectroproduction in the resonance region.

NSTAR, May 17 2011, Jefferson Lab

Exclusive π0 electroproductionin the resonance region.

Maurizio Ungaro, Kyungseon Joo, Nick Markov

University of ConnecticutJefferson Laboratory

for the CLAS collaboration

1M.Ungaro

NSTAR, May 17 2011, Jefferson Lab 2

• Introduction• Experiment Overview• Preliminary Results• Summary

Outline

M.Ungaro

NSTAR, May 17 2011, Jefferson Lab 3M.Ungaro

Map the gNN* electro-couplings as a function of photon virtuality with a combined analysis of electroproduction channels

Access active degrees of freedom at various distances

Explore the non-perturbative strong interactions responsible for nucleon formation and the origin of quark confinement

N* Program in CLAS

Example of non-perturbative approaches: LQCD, DSE, LCSR

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 4M.Ungaro

+ in the resonance region

Q2: 1.6 5.4 GeV2

W: 1.1 1.8 GeV58000 data points

electro-production

e

e’

γv N*, △*

+,

n, p’p

Single +, production in the Delta

Q2: 2 6.5 GeV2

W: 1.1 1.4 GeV7200 data points

1.1 W 2.0

0

Q2

6 M. Ungaro Phys.Rev.Lett.97:112003,2006

K. Park Phys.Rev.C77:015208,2008I.G. Aznauryan Phys.Rev.C78:045209,2008

Missing:0 in the resonance region

Q2: 2.0 6.5 GeV2

W: 1.1 2.0 GeV~75000 data points

Maurizio UngaroNick Markov, UCONN116000 Data Points

Q2: 0.4 1.0 GeV2

W: 1.1 1.8 GeV~40000 data points

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 5

Experiment Overview

N

= (s s W,Q2,cos(q*))

M.Ungaro

detect:Electron, Proton

extract:• Cross sections, Structure

Functions• Beam Spin Asymmetries• Helicity amplitudes and their

Q2 dependence

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 6

Experiment Overview

M.Ungaro

October 2001 – January 2002 Beam Energy = 5.75 GeV Current Intensity = 10nA (1034cm-2s-1) 3.7 Billions triggers December 2002 – January 2003 Beam Energy = 2.036 GeV Current Intensity = 10nA (1034cm-2s-1) 1.5 Billions triggers

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 7M.Ungaro

B.H. Separation:The typical angle between the emitted photon and the electron in B.H. processes is θ m/E∼

Analysis Overview

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 8M.Ungaro

B.H. Separation:The typical angle between the emitted photon and the electron in B.H. processes is θ m/E∼

Analysis Overview

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 9M.Ungaro

Analysis Overview

24 f bins200M Generated Events

MAID2007AAO_RAD

Electron ID Proton ID Vertex Correction, Selections Electron Fiducial Cut Proton Fiducial Cut Timing Resolution Match Momentum Resolution Match Drift Chamber Efficiencies p0 selection

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 10M.Ungaro

Analysis Overview

96 f bins200M Generated Events

MAID2007AAO_RAD

Electron ID Proton ID Vertex Correction, Selections Electron Fiducial Cut Proton Fiducial Cut Timing Resolution Match Momentum Resolution Match Drift Chamber Efficiencies p0 selection

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 11M.Ungaro

exclurad (Afanasev, Akushevich, Burkert, Joo)

Input: Exclusive cross section

No peaking approximation No soft-hard photon discrimination Radiation of 4 SF with angular dependence of each one (exclusive electro-production)

Radiative Correction

W=1.29

Analysis Overview

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 12M.Ungaro

exclurad (Afanasev, Akushevich, Burkert, Joo)

Input: Exclusive cross section

No peaking approximation No soft-hard photon discrimination Radiation of 4 SF with angular dependence of each one (exclusive electro-production)

Radiative Correction

W=1.63

Analysis Overview

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 13M.Ungaro

Normalization check: Good electron PID, fiducial cut Good acceptance from simulation Vertex Correction, Cuts Kinematic Corrections Elastic Scattering Inclusive scattering

Data Keppel Brasse

Analysis Overview

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 14M.Ungaro

S1 S2

S3

S5 S6

S4

Normalization check: Good electron PID, fiducial cut Good acceptance from simulation Vertex Correction, Cuts Kinematic Corrections Elastic Scattering Inclusive scattering

Data Keppel Brasse

W [GeV]

W [GeV]

W [GeV]

W [GeV]

W [GeV]

W [GeV]

Analysis Overview

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 15M.Ungaro

Variable Bin size bins

W, GeV 0.025 28 1.1 1.8

Q2, GeV2 0.1 6 0.41.0

cosθ 0.2 10 -1 1

φ 15o 24 0o

360o

40320 points

Preliminary Results, Low Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 16M.Ungaro

Preliminary Results, Low Q2

Q2 = 0.45 GeV2

CLAS P

relim

inary

Variable Bin size bins

W, GeV 0.025 28 1.11.8

Q2, GeV2 0.1 6 0.41.0

cosθ 0.2 10 -11

φ 15o 24 0o

360o

W = 1.5625 GeV

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 17M.Ungaro

Preliminary Results, Low Q2

Q2 = 0.55 GeV2

CLAS P

relim

inary

Variable Bin size bins

W, GeV 0.025 28 1.11.8

Q2, GeV2 0.1 6 0.41.0

cosθ 0.2 10 -11

φ 15o 24 0o

360o

W = 1.5625 GeV

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 18M.Ungaro

Preliminary Results, Low Q2

Q2 = 0.65 GeV2

CLAS P

relim

inary

Variable Bin size bins

W, GeV 0.025 28 1.11.8

Q2, GeV2 0.1 6 0.41.0

cosθ 0.2 10 -11

φ 15o 24 0o

360o

W = 1.5625 GeV

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 19M.Ungaro

Preliminary Results, Low Q2

Q2 = 0.75 GeV2

CLAS P

relim

inary

Variable Bin size bins

W, GeV 0.025 28 1.11.8

Q2, GeV2 0.1 6 0.41.0

cosθ 0.2 10 -11

φ 15o 24 0o

360o

W = 1.5625 GeV

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 20M.Ungaro

Preliminary Results, Low Q2

Q2 = 0.85 GeV2

CLAS P

relim

inary

Variable Bin size bins

W, GeV 0.025 28 1.11.8

Q2, GeV2 0.1 6 0.41.0

cosθ 0.2 10 -11

φ 15o 24 0o

360o

W = 1.5625 GeV

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 21M.Ungaro

Preliminary Results, Low Q2

Q2 = 0.95 GeV2

CLAS P

relim

inary

Variable Bin size bins

W, GeV 0.025 28 1.11.8

Q2, GeV2 0.1 6 0.41.0

cosθ 0.2 10 -11

φ 15o 24 0o

360o

W = 1.5625 GeV

NSTAR, May 17 2011, Jefferson Lab 22M.Ungaro

45 bins in W, DW=20 MeV7 bins in Q2 DQ2/Q2 ~ 0.18

10 bins in cos(q*)24, 48, 96 bins in f*

W [GeV]

Q2

[GeV

2 ]

W=1.59 Q2=3.5

Total: 75600 CS points

f [de

g]Cos(q)

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 23M.Ungaro

350 pointsout of 75K

m

b/sr

ad

dWdQ2dΩ*= Γγ

dΩ*

CLAS P

relim

inary

Q2 = 2.4 GeV2

= f 97.50 ± 7.50

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 24M.Ungaro

350 pointsout of 75K

m

b/sr

ad

dWdQ2dΩ*= Γγ

dΩ*

CLAS P

relim

inary

Q2 = 3.0 GeV2

= f 97.50 ± 7.50

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 25M.Ungaro

350 pointsout of 75K

m

b/sr

ad

dWdQ2dΩ*= Γγ

dΩ*

CLAS P

relim

inary

Q2 = 4.2 GeV2

= f 97.50 ± 7.50

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 26M.Ungaro

aTL

LT =b

sinθ 2ε (ε +1)

TTT

c

2sin

240 pointsout of 75K

CLAS P

relim

inary

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

W = 1.23 GeV2

Q2 = 3.0 GeV2

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 27M.Ungaro

CLAS P

relim

inaryaTL

LT =b

sinθ 2ε (ε +1)

TTT

c

2sin

240 pointsout of 75K

W = 1.41 GeV2

Q2 = 3.0 GeV2

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 28M.Ungaro

CLAS P

relim

inaryaTL

LT =b

sinθ 2ε (ε +1)

TTT

c

2sin

240 pointsout of 75K

W = 1.63 GeV2

Q2 = 3.0 GeV2

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 29M.Ungaro

CLAS P

relim

inary

aTL

LT =b

sinθ 2ε (ε +1)

TTT

c

2sin

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

Q2 = 2.4 GeV2

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 30M.Ungaro

Preliminary Results

CLAS P

relim

inary

aTL

LT =b

sinθ 2ε (ε +1)

TTT

c

2sin

Q2 = 4.2 GeV2

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 31M.Ungaro

CLAS P

relim

inary

aTL

LT =b

sinθ 2ε (ε +1)

TTT

c

2sin

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

Q2 = 2.4 GeV2

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 32M.Ungaro

CLAS P

relim

inary

aTL

LT =b

sinθ 2ε (ε +1)

TTT

c

2sin

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

Q2 = 4.2 GeV2

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 33M.Ungaro

CLAS P

relim

inary

aTL

LT =b

sinθ 2ε (ε +1)

TTT

c

2sin

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

Q2 = 2.4 GeV2

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 34M.Ungaro

CLAS P

relim

inary

aTL

LT =b

sinθ 2ε (ε +1)

TTT

c

2sin

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

Q2 = 4.2 GeV2

Preliminary Results, High Q2

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 35M.Ungaro

MAID07Red: with S11Blue: w/o S11 CLAS Preliminary

A0: Contains E0+ , sensitive to S11

Preliminary Results, Low Q2

T +εσ L = Al Pl (cosθ )l=0

n

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 36M.Ungaro

CLAS Preliminary

Preliminary Results, Low Q2

T +εσ L = Al Pl (cosθ )l=0

n

TT = sin2θ Bl Pl (cosθ )l=0

n

LT = sinθ Cl Pl (cosθ )l=0

n

NSTAR, May 17 2011, Jefferson Lab 37M.Ungaro

Single pseudoscalar meson production, e.g. Nπ, Nη

Unitary isobar model (UIM) non-resonant amplitudes incorporate nucleon and

meson Born terms, vector meson exchanges, Regge terms at high energy

resonant terms incorporate relativistic BW amplitude with energy-dependent widths

full amplitude unitarized in K-matrix approximation

Fixed-t dispersion relations (DR) resonance amplitudes constructed in same way as

in UIM non-resonant amplitudes from Born terms and

dispersion relation.

Analysis Tools

NSTAR, May 17 2011, Jefferson Lab Williamsburg, VA 38M.Ungaro

Legendre Coefficients: Combined p0 and p+ analysis with DR model

CLAS PreliminaryQ2 = 3.5 GeV2

Preliminary Results, High Q2

ds/dW* = sT + esL + esTTsin2qcos2f + √2 ( +1)e e sLTsinqcosf

NSTAR, May 17 2011, Jefferson Lab 39

not so distant future…

60 Days at 1035 cm-2s-1

M.Ungaro

NSTAR, May 17 2011, Jefferson LabM.Ungaro 40

Summary, Outlook

CLAS P

relim

inary

To do list:JANR, DR, SAID analysis

Analysis Review:p0 (by this summer, both low and high Q2)

Access active degrees of freedom at various distances

Explore the non-perturbative strong interactions responsible for nucleon formation and the origin of quark confinement

116,000 data points to be added spanning Q2 from 0.4 to 6 GeV2

NSTAR, May 17 2011, Jefferson Lab 41M.Ungaro

LQCD

C. Alexanrou H.W. Lin

NSTAR, May 17 2011, Jefferson Lab 42M.Ungaro

DSE

We can use high precision measurement of nucleon-resonance transition form factor to chart the momentum evolution of the dressed-quark mass.

JLAB 12

Cloet, Bentz and Thomas

NSTAR, May 17 2011, Jefferson Lab 43M.Ungaro

Distribution Amplitudes Form Factors

LCSR

difference in wave functions at origin of ground and S11(1535) states was observed for the first time in LQCD calculations with pion mass 280 MeV

NSTAR, May 17 2011, Jefferson Lab 44M.Ungaro

GPD, TPE

Large NC limit: ND GPD HM is related to isovector elastic GPD E(x,x, t)

2γ corrections for the same values of RS MPascalutsa, Carlson, Vanderhaeghen

NSTAR, May 17 2011, Jefferson Lab 45

Transverse Charge DensitiesL. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen arXiv:0909.2335 [nucl-th]

N Roper

N S11

N D13

M.Ungaro