Fluorescence Resonance Energy Transfer (FRET)

12
Fluorescence Resonance Energy Transfer (FRE Donor Fluorescence Acceptor Absorption INTENSITY 400 450 500 550 600 650 WAVELENGTH (nm)

description

Donor Fluorescence. Acceptor Absorption. INTENSITY. 400. 450. 500. 550. 600. 650. WAVELENGTH (nm). Fluorescence Resonance Energy Transfer (FRET). FRET ( F luorescence R esonance E nergy T ransfer). F örster Equation. S 1. k T = (1/  D )(r/R 0 ) 6. k F. k NR. k T. hv. - PowerPoint PPT Presentation

Transcript of Fluorescence Resonance Energy Transfer (FRET)

Page 1: Fluorescence Resonance Energy Transfer (FRET)

Fluorescence Resonance Energy Transfer (FRET)

Donor Fluorescence

Acceptor Absorption

INT

EN

SIT

Y

400 450 500 550 600 650WAVELENGTH (nm)

Page 2: Fluorescence Resonance Energy Transfer (FRET)

FRET(Fluorescence Resonance Energy Transfer)

hv kF kNR

S1

S0

kTkT = (1/D)(r/R0)

6 Förster Equation

Page 3: Fluorescence Resonance Energy Transfer (FRET)

Efficiency (E) of FRET

E = kT/(kT + kD) = R06/(R0

6 + r6)

kD = relaxation rate in the absence of FRET = kF + kNR = 1/Donor

or

 

where R0 = 8.79x10-5(2n-4DJ(λ))1/6 = distance in Å at which E = 0.5.

 n = refractive index 1.4 for protein solutions.2 = orientation factor = 2/3 for an isotropically tumbling system.D = quantum yield of donor.J (λ) = overlap integral between donor emission and acceptor

absorption. = εA(λ)•FD(λ)•λ4dλ

r RE

E

0

1 61

/

Page 4: Fluorescence Resonance Energy Transfer (FRET)

Distance Dependence of FRET

Efficiency = 1 – (IDA/ ID)

INT

EN

SIT

Y

400 450 500 550 600 650WAVELENGTH (nm)

ADR

Eff

icie

ncy

0 2 4 6 8Distance (nm)

R0 = 5.3 nm0.5

1.0

10

Efficiency = R0

6

R06 + R6

Page 5: Fluorescence Resonance Energy Transfer (FRET)

Distance Dependence of FRET

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Distance (nm)

FR

ET

Eff

icie

ncy

20

40

60

R0 (nm)

Page 6: Fluorescence Resonance Energy Transfer (FRET)

Measurement of FRET

E can be experimentally measured by looking at changes in the emission lifetime or intensity (quantum yield) of the donor:

E = 1 – (DA/D)

= 1 – (IDA/ID)

Or by looking at the sensitized emission of the acceptor molecule:

 E = ((IAD/IA) – 1)(A/D)

Page 7: Fluorescence Resonance Energy Transfer (FRET)

W29F

W36F

W512F

W546M

W597F

W441F W625F

V413W

ABL

ELC

Upper 50 kDa Subdomain

Actin-Binding Cleft

Lower 50 kDa Subdomain

F425W

Page 8: Fluorescence Resonance Energy Transfer (FRET)

HN

Donor

Acceptor

Page 9: Fluorescence Resonance Energy Transfer (FRET)

Title

F344W mant-ATP22.4 Å

F344W MDE

Dominguez et al. 1998

Page 10: Fluorescence Resonance Energy Transfer (FRET)

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 320 340 360 380 400

F344W

F344W + ATP

F344W + Mant ATP

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 320 340 360 380 400

F344W

F344W + ADP

F344W + Mant ADP

F344W-MDE fluorescence emission spectra

ATP ADP

Nor

mal

ized

flu

ores

cenc

e

Page 11: Fluorescence Resonance Energy Transfer (FRET)

r Ro Efficiency (%) D (% apo) DA (% apo)

24 ± 2 Å 20.1 Å 26 ± 2.3 ADP 30 ± 2 Å 21.4 Å 6 ± 0.4

ATP

81 ± 5 76 ± 4 76 ± 3 56 ± 4

Analysis of FRET Data

Distance (Å)

Effi

ciency

0 8 16 24 32

R0=20 Å0.5

1.0

40

R06 Imant Nuct.

R06 + R6 INuct.

E = = 1–

ATP ADP

The nucleotide binding pocket opens ~ 6Å upon phosphate release.

Page 12: Fluorescence Resonance Energy Transfer (FRET)

0 20 40 60 80 100 120

rate

(se

c-1 )

0

50

100

150

200

250

300

350

ATPmant ATP

Max. rate = 150 sec-1

Slope = 3.3 sec-1 μM -1

Stopped-flow rates

[nucleotide] μM