Electroweak Physics Lecture 2

Post on 14-Jan-2016

37 views 0 download

description

Electroweak Physics Lecture 2. Last Lecture. Use EW Lagrangian to make predictions for width of Z boson: Relate this to what we can measure: σ (e+e − → ff ) Lots of extracted quantities m Z , Γ Z Today look at the experimental results from LEP&SLC. Review of our Aim. - PowerPoint PPT Presentation

Transcript of Electroweak Physics Lecture 2

1

Electroweak PhysicsLecture 2

2

Last Lecture• Use EW Lagrangian to make predictions for width of

Z boson:

• Relate this to what we can measure: σ(e+e−→ff)

• Lots of extracted quantities– mZ, ΓZ

• Today look at the experimental results from LEP&SLC

2 2( ) f fZ f f V A

2

22 2 2 2

12 1

/

ee ffZ

Z QED ZZ Z Z

se e Z f f

m R s m s m

3

Review of our Aim

• Aim: to explain as many of these measurements as possible

Z pole measurements from

LEP and SLC!

4

Physics Topics

• Total cross section to quarks and leptons– Number of neutrinos

• Angular cross sections– Asymmetries

• Between forward and backward going particles• Between events produced by left and right electrons

– e+e−e+e−

• τ-polarisation

• Quark final states

5

Measuring a Cross Section

• Experimentalists’ formula:

• Nsel, number of signal events– Choose selection criteria, count the number that agree

• Nbg, number of background events– Events that aren’t the type you want, but agree with criteria

• εsel, efficiency of selection criteria to find signal events– use a detailed Monte Carlo simulation of physics+detector

to determine

• L, luminosity: measure of e+e− pairs delivered

6

An example: σ(e+e−→quarks)

• Select events where the final state is two quarks• In detector quarks appears as jets

• Simple selection criteria:• Number of charged tracks,

Nch

• Sum of track momenta, Ech

• Efficiency,ε ~ 99%• Background ~ 0.5%

• mainly from τ+τ−

7

Measured Cross Sections

• as function of CM energy

8

Use Fit to Extract Parameters

• Fit σ(e+e−→hadrons) as function of s with to find best value for parameters:

• mZ

• ΓZ

• σ0had

2

02 2 2 2 2

1hadrons

( ) /z

hadQED z z z

sZ

R s m s m

9

Energy of the Beam

• Critical to measurement:– How well do you know the

energy of the beam, s ?

• At LEP, it was required to take into account:– The gravitational effect of

the moon on tides– The height of the water in

Lake Geneva– Leakage Currents from the

TGV to Paris

10

Leptonic Cross Sections• Leptonic cross sections measured in a similar way:

• σ(e+e−→e+e−)• σ(e+e−→μ+μ−)• σ(e+e−→τ+τ−)

• Use to extract values for

Equal up to QED, QCD corrections

00

0had had

eee ee

R

0 hadR

0 hadR

11

Values Extracted from Total Cross Section

12

Number of Neutrinos

• Use σhad to extract number of neutrinos

• N(ν)=2.999 0.011

• Only three light (mν~<mZ/2) neutrinos interact with Z

13

Cross Section Asymmetries

• Results so far only use the total number of events produced

• Events also contain angular information

• Cross section asymmetries can be used to exploit the angular information

– Forward Backward Asymmetry, Afb

– Left-Right Asymmetry, ALR

14

Angular Cross Section

y

z

x

θ φ

15

Angular Cross Section II• Simplifies to:

• Pe is the polarisation of the electron • Pe=+1 for right-handed helicity

• Pe=−1 for left-handed helicity

– For partial polarisation:

• and:

• depends on axial and vector couplings to the Z• SM:

16

Asymmetries• Can measure the asymmetries for all types of

fermion• axial & vector couplings depend on the value of

sin2θWAsymmetries measure

Vf, Af and sin2θW

17

Forward-Backward Asymmetry I

• At Z energies the basic Feynman diagrams are:– Z exchange (dominant, due to resonance effect) exchange (becomes more important ‘off-peak’)

exchange is a pure vector: parity conserving process– the angular distribution of the final state fermions only

involves even powers of cos is the angle between the outgoing fermion direction and the

incoming electron

– for spin 1 spin 1/2 e+e- (cos) ~ 1 + cos²

18

Forward-Backward Asymmetry II

• Z exchange is a V-A parity violating interaction – the angular distribution of the final state fermions can involve

odd and even powers of cos

(cos) ~| AZ +A |²~ AZ²+2A AZ +A²– ~ 1 + g(E) cos + cos² -1 < g(E)

< 1

• Away from resonance: E >> MZ or E << MZ

– Can neglect |AZ|² contribution

– cos term due to /Z interference; g(E) increases as |E-MZ| increases

• Near resonance: E MZ

– neglect |A|² and 2A AZ contributions

– small cos term due to V-A structure of AZ

19

Forward-Backward Asymmetry III

• Asymmetry between fermions that go in the same direction as electron and those that go in the opposite direction.

• At the Z pole (no γ interference):

• SM values for full acceptance• Afb(ℓ)=0.029• Afb(up-type)=0.103• Afb(down-type)=0.140

(cos 0) (cos 0)

(cos 0) (cos 0)fbA

20

Forward Backward Asymmetry Experimentally

• Careful to distinguish here between fermions and anti-fermions

• Experimentalists’ formula:

• Ratio is very nice to measure, things cancel:– Luminosity

– Backgrounds + efficiencies are similar for Nf Nb

• Expression only valid for full (4π) acceptance

NF: Number of fermions produced in forward region, θ<π/2

NB: Number of fermions produced in backward region, θ>π/2

21

Afb Experimental Results

• P: E = MZ

• P 2: E = MZ 2 GeV

22

Measured Value of Afb

• Combining all charged lepton types:

23

Extracting Vf and Af

• Large off-peak AFB are interesting to observe but not very sensitive to V-A couplings of the Z boson …

• … whereas AFB(E=MZ) is very sensitive to the couplings

– by selecting different final states (f = e, , , u, d, s, c, b) possible to measure the Vf/Af ratios for all fermion types

• Use Vf/Af ratios to extract sin²W =1 - MW²/MZ² – Vu/Au = [ 1 - (4Qu/e) sin²W ]

– Vd/Ad = - [ 1 + (4Qd/e) sin²W]

– charged leptons (e, , ) V/A = − (1− 4 sin²W )

2 2 2 23 f fe e

fb Ze e f f

V AV AA E m

V A V A

24

Extracting Vf and Af II• σ(e+e−Z ff) also sensitive to Vf and Af

– decay widths f ~ Vf² + Af²

– combining Afb(E=MZ) and f: determination of Vf and Af separately

25

An aside: e+e−e+e− • Complication for e+e−e+e− channel…

– Initial and final state are the same– Two contributions: s-channel, t-channel – … and interference

26

Angular Measurements of e+e−e+e−

27

Left-Right Asymmetry

• Measures asymmetry between Zs produced with different helicites:

Measured: Z+γ

Correction for γ interaction

Z only contribution

• Need to know beam energy precisely for γ correction

28

Left Right Asymmetry II

• Measurement only possible at SLC, where beams are polarised.

• Experimentalists’ Formula:

– Valid independent of acceptance

– Even nicer to measure than Afb, more things cancel!

<Pe>: polarisation correction factor. (bunches are not 100% polarised)

NR: Number of Zs produced by RH polarised bunches

NL: Number of Zs produced by LH polarised bunches

29

Beam Polarisation at SLC

|<Pe>|: (0.244 ±0.006 ) in 1992

(0.7616±0.0040) in 1996

• Polarised beams means that the beam are composed of more eL than eR, or vice versa

( ) ( )

( ) ( )R L

eR L

N e N eP

N e N e

•|<Pe>| = 100% for fully polarised beams

30

SLC: ALR Results

A0LR = 0.1514±0.0022

sin2θW=0.23097±0.00027

31

One more asymmetry: ALRfb

• Results:

• Combined result:

• Equivalent to:

32

Status so far…

• 6 parameters out of 18

Extracted from σ(e+e−→ff)

Afb (e+e−→ℓℓ)

AL

R

33

The Grand Reckoning

• Correlations of the Z peak parameters for each of the LEP experiments