Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk...

89
The Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL [email protected] April 11 and April 18, 2013 Dirk Zerwas Particle Physics: The Standard Model

Transcript of Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk...

Page 1: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

Particle Physics: The Standard Model

Dirk Zerwas

[email protected]

April 11 and April 18, 2013

Dirk Zerwas Particle Physics: The Standard Model

Page 2: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

charged leptons andphoton

quarks and gluon

neutrinos

W±, Z◦

H

(

uL

dL

) (

cL

sL

) (

tLbL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τL

)

uR cR tRdR sR bR

eR µR τR

γ

gW±, Z◦

H

Dirk Zerwas Particle Physics: The Standard Model

Page 3: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

charged leptons andphoton

quarks and gluon

neutrinos

W±, Z◦

H

(

uL

dL

) (

cL

sL

) (

tLbL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τL

)

uR cR tRdR sR bR

eR µR τR

γ

gW±, Z◦

H

Dirk Zerwas Particle Physics: The Standard Model

Page 4: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

charged leptons andphoton

quarks and gluon

neutrinos

W±, Z◦

H

(

uL

dL

) (

cL

sL

) (

tLbL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τL

)

uR cR tRdR sR bR

eR µR τR

γ

gW±, Z◦

H

Dirk Zerwas Particle Physics: The Standard Model

Page 5: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

charged leptons andphoton

quarks and gluon

neutrinos

W±, Z◦

H

(

uL

dL

) (

cL

sL

) (

tLbL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τL

)

uR cR tRdR sR bR

eR µR τR

γ

gW±, Z◦

H

Dirk Zerwas Particle Physics: The Standard Model

Page 6: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

History

1896 Henri Becquerel: β decay

1899 Ernest Rutherford: distinguishes α and β rays

1914 James Chadwick: the β decay has a continuousspectrum

1930 Wolfgang Pauli: postulates the neutrino (ballroom)

1933 Enrico Fermi: contact interaction

1953 Frederick Reines: νeL + p → n + e+

1956 Lee, Yang, Wu, Garwin et al: Parity violation

1961 Glashow, Salam, Weinberg, Higgs, EBKGH

1973 Lagarrigue, Faissner: neutral currents (Z◦ t-channel)

1984 Rubbia, van der Meer : W±, Z◦

2012 discovery of the Higgs boson

Dirk Zerwas Particle Physics: The Standard Model

Page 7: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

n → p + e− + νeL

Tfi ∼ G(pγµn)(eγµν)

∼ G(pγµn) 1q2−m2 (eγµν)

QED: m2 = 0 → 1q2

if m2 ≫ q2 neglect q2

constant in momentumspace → Dirac function inspace-time: contactinteraction

G ∼ 10−5GeV−2 ≪ αEM

Currents

ψψ scalar Sψγµψ vector Vψσµνψ tensor Tψγµγ5ψ axial vector Aψγ5ψ pseudo scalar PS

QED: VEW: V − AV − A violates parity(experiment)V − A quark/lepton level, nothadron level

Dirk Zerwas Particle Physics: The Standard Model

Page 8: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

n → p + e− + νeL

Tfi ∼ G(pγµn)(eγµν)

∼ G(pγµn) 1q2−m2 (eγµν)

QED: m2 = 0 → 1q2

if m2 ≫ q2 neglect q2

constant in momentumspace → Dirac function inspace-time: contactinteraction

G ∼ 10−5GeV−2 ≪ αEM

Currents

ψψ scalar Sψγµψ vector Vψσµνψ tensor Tψγµγ5ψ axial vector Aψγ5ψ pseudo scalar PS

QED: VEW: V − AV − A violates parity(experiment)V − A quark/lepton level, nothadron level

Dirk Zerwas Particle Physics: The Standard Model

Page 9: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Chirality

Chirality is the handed-ness ofthe particle:

ψ = PLψ + PRψ

= ψL + ψR

Definitions

Helicity: ~σ · ~pm = 0: Helicity = chirality

m = 0: ψ and γ5ψ solveDIRAC

Weyl basis

γ5 = iγ0γ1γ2γ3

γ25 = 1

0 = γ5γµ + γµγ5

γ5 =

(

−12 00 12

)

γ0 =

(

0 12

12 0

)

γ0† = γ0

γ5† = γ5

Dirk Zerwas Particle Physics: The Standard Model

Page 10: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Chirality

Chirality is the handed-ness ofthe particle:

ψ = PLψ + PRψ

= ψL + ψR

Definitions

Helicity: ~σ · ~pm = 0: Helicity = chirality

m = 0: ψ and γ5ψ solveDIRAC

Weyl basis

γ5 = iγ0γ1γ2γ3

γ25 = 1

0 = γ5γµ + γµγ5

γ5 =

(

−12 00 12

)

γ0 =

(

0 12

12 0

)

γ0† = γ0

γ5† = γ5

Dirk Zerwas Particle Physics: The Standard Model

Page 11: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Chirality

Chirality is the handed-ness ofthe particle:

ψ = PLψ + PRψ

= ψL + ψR

Definitions

Helicity: ~σ · ~pm = 0: Helicity = chirality

m = 0: ψ and γ5ψ solveDIRAC

Weyl basis

γ5 = iγ0γ1γ2γ3

γ25 = 1

0 = γ5γµ + γµγ5

γ5 =

(

−12 00 12

)

γ0 =

(

0 12

12 0

)

γ0† = γ0

γ5† = γ5

Dirk Zerwas Particle Physics: The Standard Model

Page 12: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Left and Right chirality

PL = 12(1 − γ5)

PR = 12(1 + γ5)

PL + PR = 1P2

L = 12(1 − γ5)

12(1 − γ5)

= 14(1 − γ5)(1 − γ5)

= 14(1 − γ5 − γ5 + γ2

5)

= 14(1 − γ5 − γ5 + 1)

= 12(1 − γ5)

PLPR = 12(1 − γ5)

12(1 + γ5)

= 14(1 − γ5)(1 + γ5)

= 14(1 − γ5 + γ5 − γ2

5)= 0

PLψ = PL

(

ψL

ψR

)

= ψL

ψPL = (PLγ0ψ)†

= ψ†R

Dirk Zerwas Particle Physics: The Standard Model

Page 13: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Left and Right chirality

PL = 12(1 − γ5)

PR = 12(1 + γ5)

PL + PR = 1P2

L = 12(1 − γ5)

12(1 − γ5)

= 14(1 − γ5)(1 − γ5)

= 14(1 − γ5 − γ5 + γ2

5)

= 14(1 − γ5 − γ5 + 1)

= 12(1 − γ5)

PLPR = 12(1 − γ5)

12(1 + γ5)

= 14(1 − γ5)(1 + γ5)

= 14(1 − γ5 + γ5 − γ2

5)= 0

PLψ = PL

(

ψL

ψR

)

= ψL

ψPL = (PLγ0ψ)†

= ψ†R

Dirk Zerwas Particle Physics: The Standard Model

Page 14: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

m = 0 helicity conserved → σ · ~p good QN

particle (p) → anti-particle −p: σ → −σ

ψR right-(left)handed (anti-)particle

ψL left-(right)handed (anti-)particle

EM current

jµ = −eψγµψ

= −eψ(PL + PR)γµ(PL + PR)ψ= −eψPLγ

µPLψ − eψPRγµPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψγµPRPLψ − eψγµPLPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψPRγµPLψ − eψPLγµPRψ

Perfect symmetry under parity: ~p → −~p

Dirk Zerwas Particle Physics: The Standard Model

Page 15: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

m = 0 helicity conserved → σ · ~p good QN

particle (p) → anti-particle −p: σ → −σ

ψR right-(left)handed (anti-)particle

ψL left-(right)handed (anti-)particle

EM current

jµ = −eψγµψ

= −eψ(PL + PR)γµ(PL + PR)ψ= −eψPLγ

µPLψ − eψPRγµPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψγµPRPLψ − eψγµPLPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψPRγµPLψ − eψPLγµPRψ

Perfect symmetry under parity: ~p → −~p

Dirk Zerwas Particle Physics: The Standard Model

Page 16: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

m = 0 helicity conserved → σ · ~p good QN

particle (p) → anti-particle −p: σ → −σ

ψR right-(left)handed (anti-)particle

ψL left-(right)handed (anti-)particle

EM current

jµ = −eψγµψ

= −eψ(PL + PR)γµ(PL + PR)ψ= −eψPLγ

µPLψ − eψPRγµPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψγµPRPLψ − eψγµPLPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψPRγµPLψ − eψPLγµPRψ

Perfect symmetry under parity: ~p → −~p

Dirk Zerwas Particle Physics: The Standard Model

Page 17: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

m = 0 helicity conserved → σ · ~p good QN

particle (p) → anti-particle −p: σ → −σ

ψR right-(left)handed (anti-)particle

ψL left-(right)handed (anti-)particle

EM current

jµ = −eψγµψ

= −eψ(PL + PR)γµ(PL + PR)ψ= −eψPLγ

µPLψ − eψPRγµPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψγµPRPLψ − eψγµPLPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψPRγµPLψ − eψPLγµPRψ

Perfect symmetry under parity: ~p → −~p

Dirk Zerwas Particle Physics: The Standard Model

Page 18: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

m = 0 helicity conserved → σ · ~p good QN

particle (p) → anti-particle −p: σ → −σ

ψR right-(left)handed (anti-)particle

ψL left-(right)handed (anti-)particle

EM current

jµ = −eψγµψ

= −eψ(PL + PR)γµ(PL + PR)ψ= −eψPLγ

µPLψ − eψPRγµPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψγµPRPLψ − eψγµPLPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψPRγµPLψ − eψPLγµPRψ

Perfect symmetry under parity: ~p → −~p

Dirk Zerwas Particle Physics: The Standard Model

Page 19: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

m = 0 helicity conserved → σ · ~p good QN

particle (p) → anti-particle −p: σ → −σ

ψR right-(left)handed (anti-)particle

ψL left-(right)handed (anti-)particle

EM current

jµ = −eψγµψ

= −eψ(PL + PR)γµ(PL + PR)ψ= −eψPLγ

µPLψ − eψPRγµPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψγµPRPLψ − eψγµPLPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψPRγµPLψ − eψPLγµPRψ

Perfect symmetry under parity: ~p → −~p

Dirk Zerwas Particle Physics: The Standard Model

Page 20: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

m = 0 helicity conserved → σ · ~p good QN

particle (p) → anti-particle −p: σ → −σ

ψR right-(left)handed (anti-)particle

ψL left-(right)handed (anti-)particle

EM current

jµ = −eψγµψ

= −eψ(PL + PR)γµ(PL + PR)ψ= −eψPLγ

µPLψ − eψPRγµPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψγµPRPLψ − eψγµPLPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψPRγµPLψ − eψPLγµPRψ

Perfect symmetry under parity: ~p → −~p

Dirk Zerwas Particle Physics: The Standard Model

Page 21: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

m = 0 helicity conserved → σ · ~p good QN

particle (p) → anti-particle −p: σ → −σ

ψR right-(left)handed (anti-)particle

ψL left-(right)handed (anti-)particle

EM current

jµ = −eψγµψ

= −eψ(PL + PR)γµ(PL + PR)ψ= −eψPLγ

µPLψ − eψPRγµPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψγµPRPLψ − eψγµPLPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψPRγµPLψ − eψPLγµPRψ

Perfect symmetry under parity: ~p → −~p

Dirk Zerwas Particle Physics: The Standard Model

Page 22: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

m = 0 helicity conserved → σ · ~p good QN

particle (p) → anti-particle −p: σ → −σ

ψR right-(left)handed (anti-)particle

ψL left-(right)handed (anti-)particle

EM current

jµ = −eψγµψ

= −eψ(PL + PR)γµ(PL + PR)ψ= −eψPLγ

µPLψ − eψPRγµPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψγµPRPLψ − eψγµPLPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψPRγµPLψ − eψPLγµPRψ

Perfect symmetry under parity: ~p → −~p

Dirk Zerwas Particle Physics: The Standard Model

Page 23: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

m = 0 helicity conserved → σ · ~p good QN

particle (p) → anti-particle −p: σ → −σ

ψR right-(left)handed (anti-)particle

ψL left-(right)handed (anti-)particle

EM current

jµ = −eψγµψ

= −eψ(PL + PR)γµ(PL + PR)ψ= −eψPLγ

µPLψ − eψPRγµPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψγµPRPLψ − eψγµPLPRψ − eψPRγµPLψ − eψPLγµPRψ

= −eψPRγµPLψ − eψPLγµPRψ

Perfect symmetry under parity: ~p → −~p

Dirk Zerwas Particle Physics: The Standard Model

Page 24: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

weak interaction: Left is not equal to Right

use vector bosons

ask for local gauge invariance

remember that U(1)EM is QED and was extremelysuccessful

unify electromagnetic and weak interactions

SU(2) × U(1)

SU(2): three generators (gauge bosons)

U(1): one generators (gauge boson)

SU(2) vector bosons must be massive (Fermi-contactinteraction)

massive vector bosons lead to a non-renomalizable theory

Dirk Zerwas Particle Physics: The Standard Model

Page 25: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

weak interaction: Left is not equal to Right

use vector bosons

ask for local gauge invariance

remember that U(1)EM is QED and was extremelysuccessful

unify electromagnetic and weak interactions

SU(2) × U(1)

SU(2): three generators (gauge bosons)

U(1): one generators (gauge boson)

SU(2) vector bosons must be massive (Fermi-contactinteraction)

massive vector bosons lead to a non-renomalizable theory

Dirk Zerwas Particle Physics: The Standard Model

Page 26: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

weak interaction: Left is not equal to Right

use vector bosons

ask for local gauge invariance

remember that U(1)EM is QED and was extremelysuccessful

unify electromagnetic and weak interactions

SU(2) × U(1)

SU(2): three generators (gauge bosons)

U(1): one generators (gauge boson)

SU(2) vector bosons must be massive (Fermi-contactinteraction)

massive vector bosons lead to a non-renomalizable theory

Dirk Zerwas Particle Physics: The Standard Model

Page 27: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

weak interaction: Left is not equal to Right

use vector bosons

ask for local gauge invariance

remember that U(1)EM is QED and was extremelysuccessful

unify electromagnetic and weak interactions

SU(2) × U(1)

SU(2): three generators (gauge bosons)

U(1): one generators (gauge boson)

SU(2) vector bosons must be massive (Fermi-contactinteraction)

massive vector bosons lead to a non-renomalizable theory

Dirk Zerwas Particle Physics: The Standard Model

Page 28: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

weak interaction: Left is not equal to Right

use vector bosons

ask for local gauge invariance

remember that U(1)EM is QED and was extremelysuccessful

unify electromagnetic and weak interactions

SU(2) × U(1)

SU(2): three generators (gauge bosons)

U(1): one generators (gauge boson)

SU(2) vector bosons must be massive (Fermi-contactinteraction)

massive vector bosons lead to a non-renomalizable theory

Dirk Zerwas Particle Physics: The Standard Model

Page 29: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

weak interaction: Left is not equal to Right

use vector bosons

ask for local gauge invariance

remember that U(1)EM is QED and was extremelysuccessful

unify electromagnetic and weak interactions

SU(2) × U(1)

SU(2): three generators (gauge bosons)

U(1): one generators (gauge boson)

SU(2) vector bosons must be massive (Fermi-contactinteraction)

massive vector bosons lead to a non-renomalizable theory

Dirk Zerwas Particle Physics: The Standard Model

Page 30: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

weak interaction: Left is not equal to Right

use vector bosons

ask for local gauge invariance

remember that U(1)EM is QED and was extremelysuccessful

unify electromagnetic and weak interactions

SU(2) × U(1)

SU(2): three generators (gauge bosons)

U(1): one generators (gauge boson)

SU(2) vector bosons must be massive (Fermi-contactinteraction)

massive vector bosons lead to a non-renomalizable theory

Dirk Zerwas Particle Physics: The Standard Model

Page 31: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

weak interaction: Left is not equal to Right

use vector bosons

ask for local gauge invariance

remember that U(1)EM is QED and was extremelysuccessful

unify electromagnetic and weak interactions

SU(2) × U(1)

SU(2): three generators (gauge bosons)

U(1): one generators (gauge boson)

SU(2) vector bosons must be massive (Fermi-contactinteraction)

massive vector bosons lead to a non-renomalizable theory

Dirk Zerwas Particle Physics: The Standard Model

Page 32: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

weak interaction: Left is not equal to Right

use vector bosons

ask for local gauge invariance

remember that U(1)EM is QED and was extremelysuccessful

unify electromagnetic and weak interactions

SU(2) × U(1)

SU(2): three generators (gauge bosons)

U(1): one generators (gauge boson)

SU(2) vector bosons must be massive (Fermi-contactinteraction)

massive vector bosons lead to a non-renomalizable theory

Dirk Zerwas Particle Physics: The Standard Model

Page 33: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

weak interaction: Left is not equal to Right

use vector bosons

ask for local gauge invariance

remember that U(1)EM is QED and was extremelysuccessful

unify electromagnetic and weak interactions

SU(2) × U(1)

SU(2): three generators (gauge bosons)

U(1): one generators (gauge boson)

SU(2) vector bosons must be massive (Fermi-contactinteraction)

massive vector bosons lead to a non-renomalizable theory

Dirk Zerwas Particle Physics: The Standard Model

Page 34: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

The free Lagrangian (L0) Remember QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x) − ∂νGaµ(x) − gSfabcGb

µ(x)Gcν(x)

Structure [λa2 , λb

2 ] = ifabcλc2

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − g2ǫabcW b

µ (x)W cν (x

Structure [Ta2 , Tb

2 ] = iǫabcTc2

(Ta)3×3

(

σa 00 0

)

Dirk Zerwas Particle Physics: The Standard Model

Page 35: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

The free Lagrangian (L0) Remember QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x) − ∂νGaµ(x) − gSfabcGb

µ(x)Gcν(x)

Structure [λa2 , λb

2 ] = ifabcλc2

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − g2ǫabcW b

µ (x)W cν (x

Structure [Ta2 , Tb

2 ] = iǫabcTc2

(Ta)3×3

(

σa 00 0

)

Dirk Zerwas Particle Physics: The Standard Model

Page 36: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

The free Lagrangian (L0) Remember QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x) − ∂νGaµ(x) − gSfabcGb

µ(x)Gcν(x)

Structure [λa2 , λb

2 ] = ifabcλc2

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − g2ǫabcW b

µ (x)W cν (x

Structure [Ta2 , Tb

2 ] = iǫabcTc2

(Ta)3×3

(

σa 00 0

)

Dirk Zerwas Particle Physics: The Standard Model

Page 37: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

The free Lagrangian (L0) Remember QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x) − ∂νGaµ(x) − gSfabcGb

µ(x)Gcν(x)

Structure [λa2 , λb

2 ] = ifabcλc2

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − g2ǫabcW b

µ (x)W cν (x

Structure [Ta2 , Tb

2 ] = iǫabcTc2

(Ta)3×3

(

σa 00 0

)

Dirk Zerwas Particle Physics: The Standard Model

Page 38: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

The free Lagrangian (L0) Remember QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x) − ∂νGaµ(x) − gSfabcGb

µ(x)Gcν(x)

Structure [λa2 , λb

2 ] = ifabcλc2

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − g2ǫabcW b

µ (x)W cν (x

Structure [Ta2 , Tb

2 ] = iǫabcTc2

(Ta)3×3

(

σa 00 0

)

Dirk Zerwas Particle Physics: The Standard Model

Page 39: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

The free Lagrangian (L0) Remember QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x) − ∂νGaµ(x) − gSfabcGb

µ(x)Gcν(x)

Structure [λa2 , λb

2 ] = ifabcλc2

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − g2ǫabcW b

µ (x)W cν (x

Structure [Ta2 , Tb

2 ] = iǫabcTc2

(Ta)3×3

(

σa 00 0

)

Dirk Zerwas Particle Physics: The Standard Model

Page 40: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − gǫabcW b

µ (x)W cν (x)

Structure [Ta2 , Tb

2 ] = iǫabcTc2

U(1)Y Y weak hypercharge:

GaugeGroup U(1)Gaugeboson 1Lorentz − Vector Bµ(x)Field − Tensor Bµν = ∂µBν(x) − ∂νBµ(x)

Dirk Zerwas Particle Physics: The Standard Model

Page 41: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − gǫabcW b

µ (x)W cν (x)

Structure [Ta2 , Tb

2 ] = iǫabcTc2

U(1)Y Y weak hypercharge:

GaugeGroup U(1)Gaugeboson 1Lorentz − Vector Bµ(x)Field − Tensor Bµν = ∂µBν(x) − ∂νBµ(x)

Dirk Zerwas Particle Physics: The Standard Model

Page 42: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − gǫabcW b

µ (x)W cν (x)

Structure [Ta2 , Tb

2 ] = iǫabcTc2

U(1)Y Y weak hypercharge:

GaugeGroup U(1)Gaugeboson 1Lorentz − Vector Bµ(x)Field − Tensor Bµν = ∂µBν(x) − ∂νBµ(x)

Dirk Zerwas Particle Physics: The Standard Model

Page 43: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − gǫabcW b

µ (x)W cν (x)

Structure [Ta2 , Tb

2 ] = iǫabcTc2

U(1)Y Y weak hypercharge:

GaugeGroup U(1)Gaugeboson 1Lorentz − Vector Bµ(x)Field − Tensor Bµν = ∂µBν(x) − ∂νBµ(x)

Dirk Zerwas Particle Physics: The Standard Model

Page 44: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

SU(2)L:

GaugeGroup SU(2)Gaugebosons 3Lorentz − Vectors W a

µ (x)

Field − Tensor W aµν = ∂µW a

ν (x) − ∂νW aµ (x) − gǫabcW b

µ (x)W cν (x)

Structure [Ta2 , Tb

2 ] = iǫabcTc2

U(1)Y Y weak hypercharge:

GaugeGroup U(1)Gaugeboson 1Lorentz − Vector Bµ(x)Field − Tensor Bµν = ∂µBν(x) − ∂νBµ(x)

Dirk Zerwas Particle Physics: The Standard Model

Page 45: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Free Lagrangian Gauge Fields SU(2)L × U(1)Y

L0 = −14BµνBµν − 1

4W aµνW µνa

= −14BµνBµν − 1

2Tr(WµνW µν)

Wµν = W aµν

Ta2

Organize the Dirac Fields

eL(x) = PLe(x)eL(x) = (γ0PLe(x))†

ℓ(x) =

νeL(x)eL(x)eR(x)

No right-handed neutrinos

Define the weak Hypercharge

hypercharge left 6= right:

Y =

−12 0 0

0 −12 0

0 0 yR

SU(2) × U(1): yR to be chosenlater.....

Dirk Zerwas Particle Physics: The Standard Model

Page 46: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Free Lagrangian Gauge Fields SU(2)L × U(1)Y

L0 = −14BµνBµν − 1

4W aµνW µνa

= −14BµνBµν − 1

2Tr(WµνW µν)

Wµν = W aµν

Ta2

Organize the Dirac Fields

eL(x) = PLe(x)eL(x) = (γ0PLe(x))†

ℓ(x) =

νeL(x)eL(x)eR(x)

No right-handed neutrinos

Define the weak Hypercharge

hypercharge left 6= right:

Y =

−12 0 0

0 −12 0

0 0 yR

SU(2) × U(1): yR to be chosenlater.....

Dirk Zerwas Particle Physics: The Standard Model

Page 47: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Free Lagrangian Gauge Fields SU(2)L × U(1)Y

L0 = −14BµνBµν − 1

4W aµνW µνa

= −14BµνBµν − 1

2Tr(WµνW µν)

Wµν = W aµν

Ta2

Organize the Dirac Fields

eL(x) = PLe(x)eL(x) = (γ0PLe(x))†

ℓ(x) =

νeL(x)eL(x)eR(x)

No right-handed neutrinos

Define the weak Hypercharge

hypercharge left 6= right:

Y =

−12 0 0

0 −12 0

0 0 yR

SU(2) × U(1): yR to be chosenlater.....

Dirk Zerwas Particle Physics: The Standard Model

Page 48: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Free Lagrangian DiracFields

L0 = νeL(x)iγµ∂µνeL(x)

+ eL(x)iγµ∂µeL(x)

+ eR(x)iγµ∂µeR(x)

= ℓ(x)iγµ∂µℓ(x)

Minimal Substitution

∂µ → ∂µ + ig2W aµ

Ta2 + ig1BµY

Interaction Lagrangian

L′ = −ℓγµ(g2W aµ

Ta2 + g1BµY )ℓ

Dirk Zerwas Particle Physics: The Standard Model

Page 49: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Free Lagrangian DiracFields

L0 = νeL(x)iγµ∂µνeL(x)

+ eL(x)iγµ∂µeL(x)

+ eR(x)iγµ∂µeR(x)

= ℓ(x)iγµ∂µℓ(x)

Minimal Substitution

∂µ → ∂µ + ig2W aµ

Ta2 + ig1BµY

Interaction Lagrangian

L′ = −ℓγµ(g2W aµ

Ta2 + g1BµY )ℓ

Dirk Zerwas Particle Physics: The Standard Model

Page 50: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Free Lagrangian DiracFields

L0 = νeL(x)iγµ∂µνeL(x)

+ eL(x)iγµ∂µeL(x)

+ eR(x)iγµ∂µeR(x)

= ℓ(x)iγµ∂µℓ(x)

Minimal Substitution

∂µ → ∂µ + ig2W aµ

Ta2 + ig1BµY

Interaction Lagrangian

L′ = −ℓγµ(g2W aµ

Ta2 + g1BµY )ℓ

Dirk Zerwas Particle Physics: The Standard Model

Page 51: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

use form of Pauli matrices and W±µ = 1√

2(W 1

µ ∓ iW 2µ )

Investigate the Interaction

L′ = −ℓγµ(g2W aµ

Ta2 + g1BµY )ℓ

= −ℓγµ[g2(W 1µ

T12 + W 2

µT22 + W 3

µT32 ) + g1BµY ]ℓ

= −g2(νeL , eL)γµ(W 1µ

τ12 + W 2

µτ22 + W 3

µτ32 )

(

νeL

eL

)

+12g1νeLγ

µBµνeL + 12g1eLγµBµeL − yRg1eRγµBµeR

= − g2√2(W +

µ νeLγµeL + W−

µ eLγµνeL)

−12(g2W 3

µ − g1Bµ)νeLγµνeL

+12(g2W 3

µ + g1Bµ)eLγµeL − yRg1BµeRγµeR

Dirk Zerwas Particle Physics: The Standard Model

Page 52: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

use form of Pauli matrices and W±µ = 1√

2(W 1

µ ∓ iW 2µ )

Investigate the Interaction

L′ = −ℓγµ(g2W aµ

Ta2 + g1BµY )ℓ

= −ℓγµ[g2(W 1µ

T12 + W 2

µT22 + W 3

µT32 ) + g1BµY ]ℓ

= −g2(νeL , eL)γµ(W 1µ

τ12 + W 2

µτ22 + W 3

µτ32 )

(

νeL

eL

)

+12g1νeLγ

µBµνeL + 12g1eLγµBµeL − yRg1eRγµBµeR

= − g2√2(W +

µ νeLγµeL + W−

µ eLγµνeL)

−12(g2W 3

µ − g1Bµ)νeLγµνeL

+12(g2W 3

µ + g1Bµ)eLγµeL − yRg1BµeRγµeR

Dirk Zerwas Particle Physics: The Standard Model

Page 53: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

use form of Pauli matrices and W±µ = 1√

2(W 1

µ ∓ iW 2µ )

Investigate the Interaction

L′ = −ℓγµ(g2W aµ

Ta2 + g1BµY )ℓ

= −ℓγµ[g2(W 1µ

T12 + W 2

µT22 + W 3

µT32 ) + g1BµY ]ℓ

= −g2(νeL , eL)γµ(W 1µ

τ12 + W 2

µτ22 + W 3

µτ32 )

(

νeL

eL

)

+12g1νeLγ

µBµνeL + 12g1eLγµBµeL − yRg1eRγµBµeR

= − g2√2(W +

µ νeLγµeL + W−

µ eLγµνeL)

−12(g2W 3

µ − g1Bµ)νeLγµνeL

+12(g2W 3

µ + g1Bµ)eLγµeL − yRg1BµeRγµeR

Dirk Zerwas Particle Physics: The Standard Model

Page 54: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

use form of Pauli matrices and W±µ = 1√

2(W 1

µ ∓ iW 2µ )

Investigate the Interaction

L′ = −ℓγµ(g2W aµ

Ta2 + g1BµY )ℓ

= −ℓγµ[g2(W 1µ

T12 + W 2

µT22 + W 3

µT32 ) + g1BµY ]ℓ

= −g2(νeL , eL)γµ(W 1µ

τ12 + W 2

µτ22 + W 3

µτ32 )

(

νeL

eL

)

+12g1νeLγ

µBµνeL + 12g1eLγµBµeL − yRg1eRγµBµeR

= − g2√2(W +

µ νeLγµeL + W−

µ eLγµνeL)

−12(g2W 3

µ − g1Bµ)νeLγµνeL

+12(g2W 3

µ + g1Bµ)eLγµeL − yRg1BµeRγµeR

Dirk Zerwas Particle Physics: The Standard Model

Page 55: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

use form of Pauli matrices and W±µ = 1√

2(W 1

µ ∓ iW 2µ )

Investigate the Interaction

L′ = −ℓγµ(g2W aµ

Ta2 + g1BµY )ℓ

= −ℓγµ[g2(W 1µ

T12 + W 2

µT22 + W 3

µT32 ) + g1BµY ]ℓ

= −g2(νeL , eL)γµ(W 1µ

τ12 + W 2

µτ22 + W 3

µτ32 )

(

νeL

eL

)

+12g1νeLγ

µBµνeL + 12g1eLγµBµeL − yRg1eRγµBµeR

= − g2√2(W +

µ νeLγµeL + W−

µ eLγµνeL)

−12(g2W 3

µ − g1Bµ)νeLγµνeL

+12(g2W 3

µ + g1Bµ)eLγµeL − yRg1BµeRγµeR

Dirk Zerwas Particle Physics: The Standard Model

Page 56: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Identify the gauge bosons

charged bosons: W±µ = 1√

2(W 1

µ ∓ iW 2µ )

neutral boson: Zµ = 1√g2

1+g22

(g2W 3µ − g1Bµ)

neutral boson: Aµ = 1√g2

1+g22

(g1W 3µ + g2Bµ)

Aµ and Zµ are orthogonal

weak angle: sin θW = g1√g2

1+g22

, cos θW = g2√g2

1+g22

Bµ = 1√g2

1+g22

(g2Aµ − g1Zµ) = cos θW Aµ − sin θW Zµ

W 3µ = 1√

g21+g2

2

(g1Aµ + g2Zµ) = sin θW Aµ + cos θW Zµ

Dirk Zerwas Particle Physics: The Standard Model

Page 57: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Identify the gauge bosons

charged bosons: W±µ = 1√

2(W 1

µ ∓ iW 2µ )

neutral boson: Zµ = 1√g2

1+g22

(g2W 3µ − g1Bµ)

neutral boson: Aµ = 1√g2

1+g22

(g1W 3µ + g2Bµ)

Aµ and Zµ are orthogonal

weak angle: sin θW = g1√g2

1+g22

, cos θW = g2√g2

1+g22

Bµ = 1√g2

1+g22

(g2Aµ − g1Zµ) = cos θW Aµ − sin θW Zµ

W 3µ = 1√

g21+g2

2

(g1Aµ + g2Zµ) = sin θW Aµ + cos θW Zµ

Dirk Zerwas Particle Physics: The Standard Model

Page 58: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Identify the gauge bosons

charged bosons: W±µ = 1√

2(W 1

µ ∓ iW 2µ )

neutral boson: Zµ = 1√g2

1+g22

(g2W 3µ − g1Bµ)

neutral boson: Aµ = 1√g2

1+g22

(g1W 3µ + g2Bµ)

Aµ and Zµ are orthogonal

weak angle: sin θW = g1√g2

1+g22

, cos θW = g2√g2

1+g22

Bµ = 1√g2

1+g22

(g2Aµ − g1Zµ) = cos θW Aµ − sin θW Zµ

W 3µ = 1√

g21+g2

2

(g1Aµ + g2Zµ) = sin θW Aµ + cos θW Zµ

Dirk Zerwas Particle Physics: The Standard Model

Page 59: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Identify the gauge bosons

charged bosons: W±µ = 1√

2(W 1

µ ∓ iW 2µ )

neutral boson: Zµ = 1√g2

1+g22

(g2W 3µ − g1Bµ)

neutral boson: Aµ = 1√g2

1+g22

(g1W 3µ + g2Bµ)

Aµ and Zµ are orthogonal

weak angle: sin θW = g1√g2

1+g22

, cos θW = g2√g2

1+g22

Bµ = 1√g2

1+g22

(g2Aµ − g1Zµ) = cos θW Aµ − sin θW Zµ

W 3µ = 1√

g21+g2

2

(g1Aµ + g2Zµ) = sin θW Aµ + cos θW Zµ

Dirk Zerwas Particle Physics: The Standard Model

Page 60: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Identify the gauge bosons

charged bosons: W±µ = 1√

2(W 1

µ ∓ iW 2µ )

neutral boson: Zµ = 1√g2

1+g22

(g2W 3µ − g1Bµ)

neutral boson: Aµ = 1√g2

1+g22

(g1W 3µ + g2Bµ)

Aµ and Zµ are orthogonal

weak angle: sin θW = g1√g2

1+g22

, cos θW = g2√g2

1+g22

Bµ = 1√g2

1+g22

(g2Aµ − g1Zµ) = cos θW Aµ − sin θW Zµ

W 3µ = 1√

g21+g2

2

(g1Aµ + g2Zµ) = sin θW Aµ + cos θW Zµ

Dirk Zerwas Particle Physics: The Standard Model

Page 61: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Identify the gauge bosons

charged bosons: W±µ = 1√

2(W 1

µ ∓ iW 2µ )

neutral boson: Zµ = 1√g2

1+g22

(g2W 3µ − g1Bµ)

neutral boson: Aµ = 1√g2

1+g22

(g1W 3µ + g2Bµ)

Aµ and Zµ are orthogonal

weak angle: sin θW = g1√g2

1+g22

, cos θW = g2√g2

1+g22

Bµ = 1√g2

1+g22

(g2Aµ − g1Zµ) = cos θW Aµ − sin θW Zµ

W 3µ = 1√

g21+g2

2

(g1Aµ + g2Zµ) = sin θW Aµ + cos θW Zµ

Dirk Zerwas Particle Physics: The Standard Model

Page 62: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

−12(g2W 3

µ − g1Bµ)νeLγµνeL + 1

2(g2W 3µ + g1Bµ)eLγµeL

−yRg1BµeRγµeR

= −12 [g2

1√g2

1+g22

(g1Aµ + g2Zµ) − g11√

g21+g2

2

(g2Aµ − g1Zµ)]νeLγµνeL

+12 [g2(sin θW Aµ + cos θW Zµ) + g1(cos θW Aµ − sin θW Zµ)]eLγµeL

−yRg1(cos θW Aµ − sin θW Zµ)eRγµeR

= −√

g21 + g2

2Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL + yReRγµeR)]

− g1g2√g2

1+g22

Aµ(−eLγµeL + yReRγµeR)

deduce g1g2√g2

1+g22

= g1 cos θW = g2 sin θW = e

deduce yR = −1Dirk Zerwas Particle Physics: The Standard Model

Page 63: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

−12(g2W 3

µ − g1Bµ)νeLγµνeL + 1

2(g2W 3µ + g1Bµ)eLγµeL

−yRg1BµeRγµeR

= −12 [g2

1√g2

1+g22

(g1Aµ + g2Zµ) − g11√

g21+g2

2

(g2Aµ − g1Zµ)]νeLγµνeL

+12 [g2(sin θW Aµ + cos θW Zµ) + g1(cos θW Aµ − sin θW Zµ)]eLγµeL

−yRg1(cos θW Aµ − sin θW Zµ)eRγµeR

= −√

g21 + g2

2Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL + yReRγµeR)]

− g1g2√g2

1+g22

Aµ(−eLγµeL + yReRγµeR)

deduce g1g2√g2

1+g22

= g1 cos θW = g2 sin θW = e

deduce yR = −1Dirk Zerwas Particle Physics: The Standard Model

Page 64: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

−12(g2W 3

µ − g1Bµ)νeLγµνeL + 1

2(g2W 3µ + g1Bµ)eLγµeL

−yRg1BµeRγµeR

= −12 [g2

1√g2

1+g22

(g1Aµ + g2Zµ) − g11√

g21+g2

2

(g2Aµ − g1Zµ)]νeLγµνeL

+12 [g2(sin θW Aµ + cos θW Zµ) + g1(cos θW Aµ − sin θW Zµ)]eLγµeL

−yRg1(cos θW Aµ − sin θW Zµ)eRγµeR

= −√

g21 + g2

2Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL + yReRγµeR)]

− g1g2√g2

1+g22

Aµ(−eLγµeL + yReRγµeR)

deduce g1g2√g2

1+g22

= g1 cos θW = g2 sin θW = e

deduce yR = −1Dirk Zerwas Particle Physics: The Standard Model

Page 65: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

−12(g2W 3

µ − g1Bµ)νeLγµνeL + 1

2(g2W 3µ + g1Bµ)eLγµeL

−yRg1BµeRγµeR

= −12 [g2

1√g2

1+g22

(g1Aµ + g2Zµ) − g11√

g21+g2

2

(g2Aµ − g1Zµ)]νeLγµνeL

+12 [g2(sin θW Aµ + cos θW Zµ) + g1(cos θW Aµ − sin θW Zµ)]eLγµeL

−yRg1(cos θW Aµ − sin θW Zµ)eRγµeR

= −√

g21 + g2

2Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL + yReRγµeR)]

− g1g2√g2

1+g22

Aµ(−eLγµeL + yReRγµeR)

deduce g1g2√g2

1+g22

= g1 cos θW = g2 sin θW = e

deduce yR = −1Dirk Zerwas Particle Physics: The Standard Model

Page 66: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

−12(g2W 3

µ − g1Bµ)νeLγµνeL + 1

2(g2W 3µ + g1Bµ)eLγµeL

−yRg1BµeRγµeR

= −12 [g2

1√g2

1+g22

(g1Aµ + g2Zµ) − g11√

g21+g2

2

(g2Aµ − g1Zµ)]νeLγµνeL

+12 [g2(sin θW Aµ + cos θW Zµ) + g1(cos θW Aµ − sin θW Zµ)]eLγµeL

−yRg1(cos θW Aµ − sin θW Zµ)eRγµeR

= −√

g21 + g2

2Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL + yReRγµeR)]

− g1g2√g2

1+g22

Aµ(−eLγµeL + yReRγµeR)

deduce g1g2√g2

1+g22

= g1 cos θW = g2 sin θW = e

deduce yR = −1Dirk Zerwas Particle Physics: The Standard Model

Page 67: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

L′ = − e√2 sin θW

(W +µ νeLγ

µeL + W−µ eLγµνeL)

− esin θW cos θW

Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL − eRγµeR)]

−eAµ(−eLγµeL − eRγµeR)

photon couples to charged particles only

charged gauge bosons ensure transition between chargedleptons and neutrinos

a neutral gauge boson is predicted

all gauge bosons are massless

Dirk Zerwas Particle Physics: The Standard Model

Page 68: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

L′ = − e√2 sin θW

(W +µ νeLγ

µeL + W−µ eLγµνeL)

− esin θW cos θW

Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL − eRγµeR)]

−eAµ(−eLγµeL − eRγµeR)

photon couples to charged particles only

charged gauge bosons ensure transition between chargedleptons and neutrinos

a neutral gauge boson is predicted

all gauge bosons are massless

Dirk Zerwas Particle Physics: The Standard Model

Page 69: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

L′ = − e√2 sin θW

(W +µ νeLγ

µeL + W−µ eLγµνeL)

− esin θW cos θW

Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL − eRγµeR)]

−eAµ(−eLγµeL − eRγµeR)

photon couples to charged particles only

charged gauge bosons ensure transition between chargedleptons and neutrinos

a neutral gauge boson is predicted

all gauge bosons are massless

Dirk Zerwas Particle Physics: The Standard Model

Page 70: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

L′ = − e√2 sin θW

(W +µ νeLγ

µeL + W−µ eLγµνeL)

− esin θW cos θW

Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL − eRγµeR)]

−eAµ(−eLγµeL − eRγµeR)

photon couples to charged particles only

charged gauge bosons ensure transition between chargedleptons and neutrinos

a neutral gauge boson is predicted

all gauge bosons are massless

Dirk Zerwas Particle Physics: The Standard Model

Page 71: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Introduce a complex scalardoublet:

φ(x) =

(

φ1(x)φ2(x)

)

Free Lagrangian

L0 = (∂µφ†)(∂µφ) − V (φ)V (φ) = κφ†φ + λ(φ†φ)2

Theory must be stable: λ > 0Minimum not at 0: κ = −µ2 < 0

The ground state is not unique:

φ = exp(iτa

2ϕa)

(

0√

µ2

)

Choose ϕ = 0 → SU(2)symmetry is broken

Dirk Zerwas Particle Physics: The Standard Model

Page 72: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Yukawa terms

LY = −yeeRφ†(

νeL

eL

)

h.c. −ye(νeL , eL)φeR

= −ye(eRφ†1νeL + eRφ

†2eL)

−ye(νeLφ1eR + eLφ2eR)

Deduce the hypercharge:

eL → eR + φ2

−12 = yH + −1

yH = 12

Minimal Subsitution

∂µφ → ∂µφ + ig2W aµ

τa2 φ

+ig1BµyHφ

∂µφ† → ∂µφ† − φ†ig2W aµ

τa2

−φ†ig1BµyH

Calculate the interaction terms

φ†(−ig2W aµ

τa2 − ig1BµyH)

(+ig2W aµ

τa2 + ig1BµyH)φ

φT = (0,

µ2

2λ) = (0, v√

2)

Dirk Zerwas Particle Physics: The Standard Model

Page 73: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Yukawa terms

LY = −yeeRφ†(

νeL

eL

)

h.c. −ye(νeL , eL)φeR

= −ye(eRφ†1νeL + eRφ

†2eL)

−ye(νeLφ1eR + eLφ2eR)

Deduce the hypercharge:

eL → eR + φ2

−12 = yH + −1

yH = 12

Minimal Subsitution

∂µφ → ∂µφ + ig2W aµ

τa2 φ

+ig1BµyHφ

∂µφ† → ∂µφ† − φ†ig2W aµ

τa2

−φ†ig1BµyH

Calculate the interaction terms

φ†(−ig2W aµ

τa2 − ig1BµyH)

(+ig2W aµ

τa2 + ig1BµyH)φ

φT = (0,

µ2

2λ) = (0, v√

2)

Dirk Zerwas Particle Physics: The Standard Model

Page 74: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Yukawa terms

LY = −yeeRφ†(

νeL

eL

)

h.c. −ye(νeL , eL)φeR

= −ye(eRφ†1νeL + eRφ

†2eL)

−ye(νeLφ1eR + eLφ2eR)

Deduce the hypercharge:

eL → eR + φ2

−12 = yH + −1

yH = 12

Minimal Subsitution

∂µφ → ∂µφ + ig2W aµ

τa2 φ

+ig1BµyHφ

∂µφ† → ∂µφ† − φ†ig2W aµ

τa2

−φ†ig1BµyH

Calculate the interaction terms

φ†(−ig2W aµ

τa2 − ig1BµyH)

(+ig2W aµ

τa2 + ig1BµyH)φ

φT = (0,

µ2

2λ) = (0, v√

2)

Dirk Zerwas Particle Physics: The Standard Model

Page 75: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Yukawa terms

LY = −yeeRφ†(

νeL

eL

)

h.c. −ye(νeL , eL)φeR

= −ye(eRφ†1νeL + eRφ

†2eL)

−ye(νeLφ1eR + eLφ2eR)

Deduce the hypercharge:

eL → eR + φ2

−12 = yH + −1

yH = 12

Minimal Subsitution

∂µφ → ∂µφ + ig2W aµ

τa2 φ

+ig1BµyHφ

∂µφ† → ∂µφ† − φ†ig2W aµ

τa2

−φ†ig1BµyH

Calculate the interaction terms

φ†(−ig2W aµ

τa2 − ig1BµyH)

(+ig2W aµ

τa2 + ig1BµyH)φ

φT = (0,

µ2

2λ) = (0, v√

2)

Dirk Zerwas Particle Physics: The Standard Model

Page 76: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

(0,

µ2

2λ)(−ig2W a

µτa2 − ig1BµyH)(+ig2W a

µτa2 + ig1BµyH)

(

0√

µ2

)

= (0,

µ2

2λ)(g2W a

µτa2 + g1BµyH)(g2W a

µτa2 + g1BµyH)

(

0√

µ2

)

= (0,

µ2

2λ)

2g2g1Aµ+(g22−g2

1)Zµ

2√

g21+g2

2

g2√2W +

µ

g2√2W−

µ −√

g21+g2

22 Zµ

2g2g1Aµ+(g22−g2

1)Zµ

2√

g21+g2

2

g2√2W +

µ

g2√2W−

µ −√

g21+g2

22 Zµ

(

0√

µ2

)

=g2

2v2

4 W−µ W µ+ +

(g21+g2

2)v2

8 ZµZ µ

The weak bosons have acquired a mass!Dirk Zerwas Particle Physics: The Standard Model

Page 77: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

(0,

µ2

2λ)(−ig2W a

µτa2 − ig1BµyH)(+ig2W a

µτa2 + ig1BµyH)

(

0√

µ2

)

= (0,

µ2

2λ)(g2W a

µτa2 + g1BµyH)(g2W a

µτa2 + g1BµyH)

(

0√

µ2

)

= (0,

µ2

2λ)

2g2g1Aµ+(g22−g2

1)Zµ

2√

g21+g2

2

g2√2W +

µ

g2√2W−

µ −√

g21+g2

22 Zµ

2g2g1Aµ+(g22−g2

1)Zµ

2√

g21+g2

2

g2√2W +

µ

g2√2W−

µ −√

g21+g2

22 Zµ

(

0√

µ2

)

=g2

2v2

4 W−µ W µ+ +

(g21+g2

2)v2

8 ZµZ µ

The weak bosons have acquired a mass!Dirk Zerwas Particle Physics: The Standard Model

Page 78: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

(0,

µ2

2λ)(−ig2W a

µτa2 − ig1BµyH)(+ig2W a

µτa2 + ig1BµyH)

(

0√

µ2

)

= (0,

µ2

2λ)(g2W a

µτa2 + g1BµyH)(g2W a

µτa2 + g1BµyH)

(

0√

µ2

)

= (0,

µ2

2λ)

2g2g1Aµ+(g22−g2

1)Zµ

2√

g21+g2

2

g2√2W +

µ

g2√2W−

µ −√

g21+g2

22 Zµ

2g2g1Aµ+(g22−g2

1)Zµ

2√

g21+g2

2

g2√2W +

µ

g2√2W−

µ −√

g21+g2

22 Zµ

(

0√

µ2

)

=g2

2v2

4 W−µ W µ+ +

(g21+g2

2)v2

8 ZµZ µ

The weak bosons have acquired a mass!Dirk Zerwas Particle Physics: The Standard Model

Page 79: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

(0,

µ2

2λ)(−ig2W a

µτa2 − ig1BµyH)(+ig2W a

µτa2 + ig1BµyH)

(

0√

µ2

)

= (0,

µ2

2λ)(g2W a

µτa2 + g1BµyH)(g2W a

µτa2 + g1BµyH)

(

0√

µ2

)

= (0,

µ2

2λ)

2g2g1Aµ+(g22−g2

1)Zµ

2√

g21+g2

2

g2√2W +

µ

g2√2W−

µ −√

g21+g2

22 Zµ

2g2g1Aµ+(g22−g2

1)Zµ

2√

g21+g2

2

g2√2W +

µ

g2√2W−

µ −√

g21+g2

22 Zµ

(

0√

µ2

)

=g2

2v2

4 W−µ W µ+ +

(g21+g2

2)v2

8 ZµZ µ

The weak bosons have acquired a mass!Dirk Zerwas Particle Physics: The Standard Model

Page 80: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

(0,

µ2

2λ)(−ig2W a

µτa2 − ig1BµyH)(+ig2W a

µτa2 + ig1BµyH)

(

0√

µ2

)

= (0,

µ2

2λ)(g2W a

µτa2 + g1BµyH)(g2W a

µτa2 + g1BµyH)

(

0√

µ2

)

= (0,

µ2

2λ)

2g2g1Aµ+(g22−g2

1)Zµ

2√

g21+g2

2

g2√2W +

µ

g2√2W−

µ −√

g21+g2

22 Zµ

2g2g1Aµ+(g22−g2

1)Zµ

2√

g21+g2

2

g2√2W +

µ

g2√2W−

µ −√

g21+g2

22 Zµ

(

0√

µ2

)

=g2

2v2

4 W−µ W µ+ +

(g21+g2

2)v2

8 ZµZ µ

The weak bosons have acquired a mass!Dirk Zerwas Particle Physics: The Standard Model

Page 81: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Charged lepton masses

LY = −ye(eRφ†1νeL + eRφ

†2eL) − ye(νeLφ1eR + eLφ2eR)

= −ye(eRv√2

eL) − ye(eLv√2

eR)

= −yev√2(eReL + eLeR)

= −yev√2(ee)

Masses

me = yev√2

m2W± =

g22v2

4 = e2v2

4 sin2 θW

m2Z◦ =

(g21+g2

2)v2

4 = e2v2

4 sin2 θW cos2 θWL → EQM

m2W±

m2Z◦

= cos2 θW

Dirk Zerwas Particle Physics: The Standard Model

Page 82: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

Charged lepton masses

LY = −ye(eRφ†1νeL + eRφ

†2eL) − ye(νeLφ1eR + eLφ2eR)

= −ye(eRv√2

eL) − ye(eLv√2

eR)

= −yev√2(eReL + eLeR)

= −yev√2(ee)

Masses

me = yev√2

m2W± =

g22v2

4 = e2v2

4 sin2 θW

m2Z◦ =

(g21+g2

2)v2

4 = e2v2

4 sin2 θW cos2 θWL → EQM

m2W±

m2Z◦

= cos2 θW

Dirk Zerwas Particle Physics: The Standard Model

Page 83: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

QuantumNumbersweak IsospinSU(2)L offermions

weakhypercharge

Q = IW3 + Y

IW IW3 Y

12

12−1

2

16

(

uL

dL

) (

cL

sL

) (

tLbL

)

12

12−1

2− 1

2

(

νeL

eL

) (

νµL

µL

) (

ντL

τL

)

0 0 23 uR cR tR

0 0 − 13 dR sR bR

0 0 − 1 eR µR τR

Dirk Zerwas Particle Physics: The Standard Model

Page 84: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

QuantumNumbersweak IsospinSU(2)L offermions

weakhypercharge

Q = IW3 + Y

IW IW3 Y

12

12−1

2

16

(

uL

dL

) (

cL

sL

) (

tLbL

)

12

12−1

2− 1

2

(

νeL

eL

) (

νµL

µL

) (

ντL

τL

)

0 0 23 uR cR tR

0 0 − 13 dR sR bR

0 0 − 1 eR µR τR

Dirk Zerwas Particle Physics: The Standard Model

Page 85: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

QuantumNumbersweak IsospinSU(2)L offermions

weakhypercharge

Q = IW3 + Y

IW IW3 Y

12

12−1

2

16

(

uL

dL

) (

cL

sL

) (

tLbL

)

12

12−1

2− 1

2

(

νeL

eL

) (

νµL

µL

) (

ντL

τL

)

0 0 23 uR cR tR

0 0 − 13 dR sR bR

0 0 − 1 eR µR τR

Dirk Zerwas Particle Physics: The Standard Model

Page 86: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

eL = (γ0PLe)† = e†P†Lγ

0 = e†PLγ0 = e†γ0PR = ePR

The interactions

L′ = − e√2 sin θW

(W +µ νeLγ

µeL + W−µ eLγµνeL)

− esin θW cos θW

Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL − eRγµeR)]

−eAµ(−eLγµeL − eRγµeR)

Dirk Zerwas Particle Physics: The Standard Model

Page 87: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

eL = (γ0PLe)† = e†P†Lγ

0 = e†PLγ0 = e†γ0PR = ePR

The interactions

L′ = − e√2 sin θW

(W +µ νeLγ

µeL + W−µ eLγµνeL)

− esin θW cos θW

Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL − eRγµeR)]

−eAµ(−eLγµeL − eRγµeR)

Electromagnetic Current

L′ = −eAµ(−ePRγµPLe − ePLγµPRe)

= −eAµeγµQe = −eAµeγµ(IW3 + Y )e

= −eAµjµEM

Dirk Zerwas Particle Physics: The Standard Model

Page 88: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

eL = (γ0PLe)† = e†P†Lγ

0 = e†PLγ0 = e†γ0PR = ePR

The interactions

L′ = − e√2 sin θW

(W +µ νeLγ

µeL + W−µ eLγµνeL)

− esin θW cos θW

Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL − eRγµeR)]

−eAµ(−eLγµeL − eRγµeR)

Charged Current

L′ = − e√2 sin θW

(W +µ νeLγ

µPLe + W−µ ePRγµνeL)

= − e√2 sin θW

(W +µ νeLγ

µPLe + W−µ eγµPLνeL)

= − e√2 sin θW

(W +µ jµCC + W−

µ jµCC†)

Dirk Zerwas Particle Physics: The Standard Model

Page 89: Particle Physics: The Standard ModelThe Electroweak Theory Particle Physics: The Standard Model Dirk Zerwas LAL zerwas@lal.in2p3.fr April 11 and April 18, 2013 Dirk Zerwas Particle

The Electroweak Theory

FermiLeft and RightLagrangienHiggs

eL = (γ0PLe)† = e†P†Lγ

0 = e†PLγ0 = e†γ0PR = ePR

The interactions

L′ = − e√2 sin θW

(W +µ νeLγ

µeL + W−µ eLγµνeL)

− esin θW cos θW

Zµ[12νeLγ

µνeL − 12eLγµeL

− sin2 θW (−eLγµeL − eRγµeR)]

−eAµ(−eLγµeL − eRγµeR)

Neutral Current

L′ = − esin θW cos θW

Zµ[νeLγµIW

3 νeL + eLγµIW3 eL

− sin2 θW jµEM ]

= − esin θW cos θW

ZµjµNC

Dirk Zerwas Particle Physics: The Standard Model