Design of axially loaded piles - IGBE - AGTZE · PDF fileDesign of axially loaded piles. 2....

Post on 01-Feb-2018

246 views 1 download

Transcript of Design of axially loaded piles - IGBE - AGTZE · PDF fileDesign of axially loaded piles. 2....

Addis Ababa, September 2010

Prof. Dr.-Ing. Martin AchmusInstitute of Soil Mechanics, Foundation Engineering and Waterpower Engineering

Design of axially loaded piles

Design of axially loaded piles Addis Abbaba, September 20102

Presentation structure:

• Onshore design procedure

• Offshore design methodsAPI α- and β-methodsCPT-based methods for sands

• Comparison for North Sea conditions

• Consideration of cyclic loading effects

Design of axially loaded piles

Design of axially loaded piles Addis Abbaba, September 2010

Tripod and Jacket Foundations for Offshore Wind Energy Converters

• large base area, with piles in the edges• for water depth larger than 25m• most relevant loading (design-driving): axial (tension/compression)• pile diameters 1.5 to 2.5m, connected to the structure by grouted pile sleeves• questions: 1) ultimate pile capacity

2) effect of cyclic loading

Design of axially loaded piles Addis Abbaba, September 2010

Axial capacity of piles

kbksk RRR ,1,1,1 +=Tension:

Skin friction:

kbbkb qAR ,,1 ⋅=∑ ∑ ⋅⋅==i i

iiksiksks lqURR ,,,,1,1

Compression:ksk RR ,1,1 =

Base resistance:

According to DIN 1054 (2005-01)

Onshore: • Tabulated experience values• Pile load tests

Offshore: • API approach• CPT-based methods (NGI – 2005, ICP – 2005,

UWA – 2005, Fugro – 2005)

Methods to derive skin friction and base resistance

Index 1 for ULS

Design of axially loaded piles Addis Abbaba, September 2010

Design proofs according to DIN 1054

Ultimate limit state (ULS) design

Based on load tests: (Compression pile)

(Tension pile)

Based on experience:

Serviceability limit state (SLS) design

dd RE ,1,1 ≤

QkQGkGd EEE γγ ⋅+⋅= ,,,1

Pckd RR γ,1,1 =

Ptkd RR γ,1,1 =

Pkd RR γ,1,1 =

kdkd RREE ,2,2,2,2 =≤= Index 2 for SLS

LC 1 LC 2 LC 3

γG 1.35 1.25 1.1

γQ 1.5 1.3 1.1

γP 1.4 1.4 1.4

γPc 1.2 1.2 1.2

γPt 1.3 1.3 1.3

Partial safety factors, dependent on load cases

Design of axially loaded piles Addis Abbaba, September 2010

Open steel pipe piles

Compression piles:

If plugging occurs, base resistance acts along the whole cross section; if not, inner skin friction is to be considered

Tension piles:

Capacity due to inner skin friction is limited by the weight of the soil plug

Tensile skin friction is smaller than compressive skin friction

Design of axially loaded piles Addis Abbaba, September 2010

API α-method for cohesive soils

Base resistance:

cu(z) [kPa]= undrained shear strength in depth z

(z)cq ub,k ⋅= 9

Skin friction:

cu(z) [kPa] = undrained shear strength in depth zα [-] = dimensionless factor

Ψ [-]= c(z)/ σ‘v(z)

(z)c(z)=αq us,k ⋅

0.15.0

0.15.0250

5.0

>⋅=

≤⋅=−

ψforψα

ψforψα,

Design of axially loaded piles Addis Abbaba, September 2010

Skin friction:

k [-] = earth pressure coefficientk = 1.0 for closed-ended/plugged pilesk = 0.8 for open-ended piles

δ [°] = wall friction angle between pile and soilσ‘v [kPa]= γ‘ z = effective vertical stressβ= k tan(δ) [-] = dimensionless coefficient according to table 1

β can be increased by 25% for closed-ended orplugged piles

maxtan s,k,'vvs,k qσβδ(z)σ'k(z)q ≤⋅=⋅⋅=

D

z

qs,k

qb,k

qs,k(z)

E

Base resistance:

Nq [-] = dimensionless factor according to table 1σ‘v = γ‘ z = effective vertical stress

maxb,k,v,bqb,k qσ'Nq ≤=

API β-method for non-cohesive soils

Design of axially loaded piles Addis Abbaba, September 2010

API β-method for non-cohesive soils

Design of axially loaded piles Addis Abbaba, September 2010

Proof of serviceabilityt-z, Q-z-curves according to API RP 2A 2007

Clay

Design of axially loaded piles Addis Abbaba, September 2010

API β-method: critics

• API gives conservative results for short piles and also for long piles in dense sand

• for long piles in loose or medium dense sand results can be unsafe

0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50

RA

PI/ R

Mes

swer

t 3.41

offengeschlossen

Toolan et al. 1990

Embedded length in m

RA

PI/ R

mea

sure

d

openclosed-ended

Design of axially loaded piles Addis Abbaba, September 2010

EffectsInstallation effects during driving

Partial or total plugging affects radial stresses

Incremental filling ratio

During driving skin friction fatigue occurs; the farer away from pile tip, the larger the friction degradation

Design of axially loaded piles Addis Abbaba, September 2010

EffectsInteraction skin friction – base resistance

Rs

qs,Druck

EDruck

Rb

(Witzel 2004)

Design of axially loaded piles Addis Abbaba, September 2010

CPT-based methods (API RP 2A 2007)

Ar = 1 – (Di / D)² effektives FlächenverhältnisD = PfahldurchmesserDi = innerer PfahldurchmesserL = EinbindetiefePa = atmosphärischer Druckqc = Drucksondierungsspitzendruck qs = f (z) = Mantelreibung

σ‘v0 = effektive Vertikalspannungδcv = Wandreibungswinkela, b,c, d, e, u, v = empirische Beiwerte,

abhängig vom CPT-Basierten Verfahren

New methods for prediction of skin friction and base resistanceICP-05, Fugro-05 and UWA-05:

MethodeArt der

Belastung

Parameter

a b c d e u ν

ICP-05Druck 0,1 0,2 0,4 1 0 0,023

Zug 0,1 0,2 0,4 1 0 0,016

UWA-05Druck 0 0,3 0,5 1 0 0,030 2

Zug 0 0,3 0,5 1 0 0,022 2

Fugro-05Druck 0,05 0,45 0,9 0 1 0,043

Zug 0,15 0,42 0,85 0 0 0,025

NGI-05:

(DIN EN ISO 19902)

Design of axially loaded piles Addis Abbaba, September 2010

CPT-based methods: Base resistance

Design of axially loaded piles Addis Abbaba, September 201016

Back-calculation of pile test results for open-ended piles in sand

Parametric study on the effect of relative density and pile slendernessAchmus & Müller, 2010

Design of axially loaded piles Addis Abbaba, September 2010

Effect of cyclic loading

Large amplitudes can lead to severe friction degradation. Influence factors:

• Number of cyclic load amplitudes N• Static load E0• Cyclic load Ezykl• Soil type

Schwelllast

Ezykl

Last-zyklen N

Einw

irkun

g

1 2 3

E0

Ezykl

Wechsellast

0

Cyclic load

Incremental collapse

Number of cycles N

Sedation

Shakedown

Pla

stic

stra

in ε

pl

Design of axially loaded piles Addis Abbaba, September 2010

Effect of cyclic loading

Verpresspfähle(Nauroy et al. 1985)

Verpresspfähle(Deane et al. 1988)

versagtnicht versagt

Legende:

versagtnicht versagt

Kleine Modellpfähle (Poulos und Lee 1989)

Pfahlprobebelastungen

fast versagt bei N = 2000nicht versagt bei N = 2000

Modellpfähle

N = 101

N = 102

N = 103

Normierte mittlere Belastung E / Ro k

Nor

mie

rte z

yklis

che

Bean

spru

chun

g E

/ R

zykl

k

0 0,2 0,4 0,6 0,8 1,00

0,2

0,4

0,6

0,8

1,0

instabil

stabil

N = 10

N = 50

N = 100

N = 600 Mittag und Richter 2005Zyklenanzahl N Faktor κ

1 0,50

10 0,45

100 0,40

1 000 0,35

10 000 0,30

100 000 0,25

1 000 000 0,20

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛−⋅⋅≤

201REREzykl κ

(Mittag und Richter 2005)

Design of axially loaded piles Addis Abbaba, September 201019

Design of axially loaded piles Addis Abbaba, September 2010

Gründungen – Buckets

Bucket-Prototyp, Fredrikshavn

Design of axially loaded piles Addis Abbaba, September 2010

Bucketgründungen

Entwicklung aus dem „Suction caisson“Einbringung mittels Unterdruck („suction“)Unterdruck ist begrenzt durch hydraulischenGrundbruch begrenzte Eindringtiefe

Einwirkungen beim EindringvorgangBucketgründung (schematisch)

Design of axially loaded piles Addis Abbaba, September 2010

Hydraulischer Gradient am Austritt derStrömung < 1 (entspricht hydraulischerGundbruchsicherheit von rd. 1)Strömungsnetzberechnung

146,1

68,01

'

+−

DH

Hukritγ

kritzul uu Δ=Δη1

Zulässiger Unterdruck

Design of axially loaded piles Addis Abbaba, September 2010

Realisierbare Eindringtiefe

Eindringwiderstand

Einpresskraft

zNzKzK

qss

ii

aa

')1('tan)1('tan)1(

γασγδατγδατ

−=−=+=

sm

H

zii

H

zaaEin tDdzDdzDR σππτπτ ++= ∫∫

== 00

Ei

Ein GDuF +Δ=4

Erreichbare Eindringtiefen für Buckets in mitteldichtem Sand

Design of axially loaded piles Addis Abbaba, September 2010

Vergleich Buckets – Monopiles

Tragfähigkeit von Buckets ist geringer als von MonopilesMonopod-Buckets eher für moderate Wassertiefen geeignet

Design of axially loaded piles Addis Abbaba, September 2010

Three-degrees-of-freedom loading device in Oxford

Three-dimensionalYield surface

Design of axially loaded piles Addis Abbaba, September 2010

Achtung: Gefahr des Ausbeulens

Design of axially loaded piles Addis Abbaba, September 2010

Danke für Ihre Aufmerksamkeit !