Conformal Dynamics from LHC to Cosmology IIIth- · Francesco Sannino Zakopane 2009 Conformal...

Post on 02-Oct-2020

2 views 0 download

Transcript of Conformal Dynamics from LHC to Cosmology IIIth- · Francesco Sannino Zakopane 2009 Conformal...

Francesco Sannino

Zakopane 2009

Conformal Dynamics from LHC to Cosmology III

C P 3 - O r i g i n s

Particle Physics & Origins of Mass

Technicolor

SM is Unnatural

DEWSB

Need for Conformal Dynamics

Lecture 1

Atoms4%

Dark Matter22%

Dark Energy74%

Dark Matter

!DM

!B! 5

U(1) baryon number approx. conserved.

We observe a B - Anti B asymmetry.

EW unbroken B - L allows B to survive the EW transition.

B - L need not to be conserved at GUT scales

!B

A particle similar to the nucleon

But electrically neutral

At most EW-type cross sections

Great if connected to the ESWB

What if DM is due to an asymmetry?

Technibarion is similar to the nucleon

TB number like the B number

At most EW-type cross sections

EW scale and interactions built in

Technicolor is a natural example(TIMP)

Nussinov, 86Barr - Chivukula - Farhi 90Sarkar 96Gudnason - Kouvaris - F.S. 06

Ultra Minimal Technicolor is the first physical realization Ryttov - F.S. 08

PAMELA/ATIC Decaying Dark Matter + Unification, Nardi, F.S., Strumia, 08.

TIMP can be a Boson or a Fermion

Can be (or not) neutral w.r.t. Weak Interactions

Within Technicolor

TIMP is a pseudo Goldstone-boson

Ultra Minimal Technicolor

Ryttov - F.S. 08

Composite Unparticle + TC F.S. - Zwicky 08

Unbaryon (To investigate)

Plus sign minus signCDMS II Ge CombinedXENON10 2007 Projected superCDMS

Foadi, Frandsen, F.S. 08

(GeV)

10 50 100 500 1000 5000 1! 10410"45

10"44

10"43

10"42

10"41M#

$nucleon!cm"

2 "

!nucleon =µ2

4"

!Z

A

8" # dB

!2+

dM fmN

M2HM!

"2

µ = M!mN/(M! + mN )

MH = 300 GeV

dB = ±1! =3 TeV

dM = 1

Earth Based Constraints

Asymmetric DM Relic Density

mTB

mp! 1 TeV

1 GeV= 103

TB

B! exp

!"mTB(T !)

T !

"# 10"3 T ! ! 200 GeV

!TB

!B=

TB

B

mTB

mp! O(1)

ConditionsUniverse Electric Neutrality

Chemical Equilibrium

EW Sphaleron Processes, Kuzmin-Rubakov-Shaposhnikov

TB - B violated at High Energies & approx. conserved at EW

(Extra) EW Phase Transitions

Cline, Jarvinen, F.S. 08Jarvinen, Ryttov, F.S. 09

Baryogenesis

Lecture 2

Phases of Gauge Theories

Gauge Theories Knobs:

Nf, Nc, Representations, Temperature, ...

Discoveries:

IR CD for low number of flavors!

Universal Structure

Fund

2A

2S Adj

Ladder

Catterall, SanninoDel Debbio, Patella,PicaCatterall, Giedt, Sannino, SchneibleHietanen, Rummukainen, Tuominen

Iwasaki et al.

Appelquist, Fleming, NeilDeuzeman, Lombardo, Pallante

×

×

! = 1 ! = 2

Shamir, Svetitsky, DeGrand

Non-SUSY Phase Diagram Bound

Ryttov and F.S. 07

5 6 7 8 9 100

5

10

15

20

N

Nf

A.F.B.F. & γ= 2 SD

SO(N)

SO(N) Phase Diagram

F.S. 09

Sp(2N) Phase Diagram

F.S. 092 3 4 5 60

5

10

15

20

25

30

35

N

N Wf

A.F. B.F. & γ= 2 SD

SP(2N)

Conformal House

Ryttov and F.S. 09

2 Rep. ExampleSU(N) Adjoint & Fundamental Dirac Matter

010

20

Nf !F"

0.00.5

1.01.5

Nf !Adj"2

4

6

8

10

N

Lecture 3

Minimal Walking Models

Predictions for LHC

Unification

Minimal Walking Technicolor

F.S. and Tuominen 04

Dietrich, F.S. Tuominen 06

Foadi, Frandsen, Ryttov, F.S. 07Cline, Jarvinen, F.S. 08

Belyaev, Foadi, Frandsen, Jarvinen, Pukhov, F.S. 08

Gudnason, Kouvaris, F.S. 06Gudnason, Ryttov, F.S. 06

SU(3)

SU(2)

U(1)

U

D

Gt-up

t-down

t-glue SU(2)

NExtraNeutrino

EExtra Electron

U and D: Adj of SU(2)

MWT versus EWPD

Y=-3/2 for Leptons

S

T

1 TeV

117 GeV

LEP EWG Summer 2006

100 Gev < M1 < 800 Gev

100 Gev < M2 < 1000 Gev

SLeptons =16!

!1! 2Y ln

"M1

M2

#2

+1 + 8Y

20

"mZ

M1

#2

+1! 8Y

20

"mZ

M2

#2

+ O

"m4

Z

M4i

#$

The most economical WT theory

Compatible with precision measurements

Possible DM candidates and Unification investigated

Can support 1st order Electroweak Phase Transition

Can support exotic electric charges

Lattice studies have begun

MWT Features

Ultra Minimal Walking TechnicolorRyttov and F.S. 08

Eichten and Lane

SU(3)

SU(2)

U(1)

U

D

Gt-up

t-down

t-glue SU(2)

!2!1

t-lambda

U and D: Fund of SU(2)

t-lambdas: Adj of SU(2) Singlet of SM

Weyl Fermions

The most economical “2 rep” WT theory

Smallest naive S-parameter & # of fermions

Natural DM candidate visible at LHC

Order of the Electroweak PT under investigation

Rich unexplored Collider Phenomenology

UMT Features

Minimal Walking Technicolor

Back to

The Minimal Walking Theory

2 Adj. Dirac Flavors of SU(2)

The MWT Lagrangian

What you see is “not” what LHC will see

Heavy V/V coupling

Bare mass of the Axial

MWT effective lagrangian

L(Composites) + L(Mixing with SM) + L(New Leptons) + L(SM!Higgs)

Initial investigation we include:

Composite Higgs H

Composite Axial - Vector States R1,2

MA

LHC Phenomenology

A. Belyaev R. Foadi M. T. FrandsenM. O. JarvinenA. Pukhov

In collaboration with

CalcHepBFFJPS arXiv:0809.0793

An!ls and Demons of LHC

Comprehensive Effective Technicolor Lagrangian

Vector Mesons

Yukawas

** Link to MWT via Modified Weinberg Sum Rules **

Written in a renormalizable form

With imposed constraints from Precision Data

Foadi, Frandsen, Ryttov & F.S. 07

A working technicolor benchmark

Composite Higgs Signals

Associate Higgs Production BFFJPS 08, Zerwekh 05

Higgs To be done! ! !!

pp! HV

Walking/Higher dim. rep. can allow for:

Light Composite Higgs F.S. 08 Hong, Hsu, F.S. 04 Dietrich, F.S., Tuominen 05 Doff, Natale, Rodrigues da Silva 08 Doff, Natale, 09.

Light Composite Axial Foadi, Frandsen, Ryttov F.S., 07 Eichten, Lane 07

pp! HV

|!J | < 4.5, pjT > 30 GeV, |!l| < 2.5, pl

T > 15 GeV, !R(jj/jl) > .5

65 GeV < Mjj < 95 GeV

The way this event plot is done in a simple way.

1]Cross section is computed only for pp -> HW

2] Then CalcHEP adds decays of H to ZZ and on top of that it adds decay of W and ZZ to 4l and 2j.

A better way (we have not done)

pp -> WZZ. This means CalcHEP will need to compute many more diagrams. However, if we had done this fully. Once we added the cuts the results should be the same.

Why is the purple event distribution so sharp to the right.

pp! HW± !W±ZZ ! 4l + 2j

10-2

10-1

1

10

10 2

400 600 800 1000 1200

S=0.3g̃=5MH=400!s=14 TeV

M4ljj (GeV)Num

ber o

f eve

nts/

20 G

eV @

100

fb-1

10-2

10-1

1

10

10 2

400 600 800 1000 1200

S=0.3g̃=5MH=200!s=14 TeV

M4ljj (GeV)Num

ber o

f eve

nts/

20 G

eV @

100

fb-1

|!J | < 4.5, pjT > 30 GeV, |!l| < 2.5, pl

T > 15 GeV, !R(jj/jl) > .5

65 GeV < Mjj < 95 GeV

10-2

10-1

1

10

10 2

400 600 800 1000 1200

S=0.3g̃=5MH=200!s=10 TeV

M4ljj (GeV)Num

ber o

f eve

nts/

20 G

eV @

10

fb-1

10-2

10-1

1

10

10 2

400 600 800 1000 1200

S=0.3g̃=5MH=400!s=10 TeV

M4ljj (GeV)Num

ber o

f eve

nts/

20 G

eV @

10

fb-1

pp! HW± !W±ZZ ! 4l + 2j

Further Signatures

New SM Fermions

DM candidates

Dietrich, F.S., Tuominen 05Gudnason, Ryttov & F.S. 08

Foadi, Frandsen, FS. 08Ryttov & F.S. 08Gudnason, Kouvaris & F.S. 05Kainulainen, Tuominen, Virkajarvi 06Kouvaris 07; Kouvaris, Khlopov 08

Unification

Farhi-Susskind, 79 Gudnason-Ryttov-F.S. 06

!!1n (µ) = !!1

n (MZ)! bn

2"ln

MZ

"

BTh !b3 " b2

b2 " b1=

!!13 " !!1 sin2 "w

(1 + c2)!!1 sin2 "w " c2!!1# BExp

MGUT = MZ exp!2!

"!12 (MZ)! "!1

1 (MZ)b2 ! b1

"

Degree of SU(3)xSU(2)xU(1) Unification

1 - loop running for SU(n)

Unification Scale

b3 =43Ng ! 11

b2 =43Ng !

223

+16!"#$

Higgs

b1 =35

%209

Ng +16

&=

43Ng +

110!"#$

Higgs

BTh ! 0.53 BExp ! 0.72

BTh ! 0.68 BExp ! 0.72

b3 =43Ng ! 11

b2 =43Ng !

223

+23

12

!2(2 + 1)

2+ 1

"=

43

(Ng + 1)! 223

b1 =35

!209

Ng +209

"=

43

(Ng + 1)

Standard Model

Minimal Walking Technicolor

Adding Adjoint SM Matter

Minimal Walking Technicolor + SM Adjoint Matter

Colored Octet of Majorana Particles

Weak Triplet of Majorana Fermions

Extra SM Weyl Singlet

b3 =43Ng ! 11 + 2

b2 =43!Ng + 1

"! 22

3+

43

b1 =43!Ng + 1

"

BTh = 13/18 = 0.72(2) versus BExp ! 0.72

Gudnason-Ryttov-F.S. ph/0612230

Bajc-Senjanovic ph/0612029

MSSM

MWT + SM Adjoint Fermions

Zoom in MWT + SM Adjoint Fermions

• Composite States: Technirho, composite (light) Higgs

• Detect Light Higgs: “Elementary or Composite ?”

• Study:

• 4th Family of Leptons no Quarks

What LHC can see and how may it deceive you

pp! HV

• wino/bino/gluino-like produced. Have you seen SUSY, WTC or ... ?

• Study their couplings to SM fermions

What LHC can see and how may it deceive you

Unpleasant scenario:

• WW scatttering is unitarized at the tree level up to 4 TeV with new vectors states of about 1.5 TeV. LHC and ILC will not discover! (Foadi and FS 08)

• Introduced different types of viable technicolor theories

• Phase Diagram for Gauge Theories

• Presented Minimal Walking Technicolor

• Dark Matter as a technibaryon

• Unification

Summary

Unifying also TC Cartoon!

• (Ultra) Minimal Walking Technicolor

• Associate Production of the Composite Higgs

• Heavy Vectors are best produced and detected via Drell-Yan

Summary

Beyond S-T-U

Burgess et al.Barbieri et al.

Beyond S-T-U

Recovering S and T

Computing the Parameters for (Minimal) Walking Technicolor

Foadi, Frandsen, Ryttov, F.S.Foadi, Frandsen, F.S.

95% confidence level error ellipsesSolid line , dashed-line , dotted one

Closest point M_A=600 GeV, Further away M_A=150 GeV. Foadi, Frandsen, F.S.

Custodial Technicolor

S=0

Novel Symmetry

S=0S=0

Appelquist, F.S.

Still Constrained

Low Energy Scalar Sector

Low Energy Vector Sector

Higgsless versus Higgsful

Higgsless:

Higgsful:

Spectrum of Hadronic/Technihadronic States

Using ‘t Hooft Large N and Unitarity in Pion-Pion Scattering in QCD

Vector Meson is a quark-antiquark state:

Broad Sigma of multiquark nature

F.S. & Schechter, 95Harada, F.S. and Schechter, 03Caprini, Colangelo,Leutwyler 05Maiani,Piccinini, Polosa, Riquer 04F.S. and Schechter, 07

QCD is NOT higgsless!

Higgsless: ‘t Hooft Limit

MT! =!

2v0

F"

!3!

ND NTCm!

MTf0 =!

2v0

F"!

ND

!NTC!

3

" p!12

mf0

v0 ! 250GeV

MT!(TeV)

MTf0(TeV)

ND = 2NTC

ND =NTF

2

F.S. 07

p ! 1

3 4 5 6 7 8 90.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

M_H/M_V < 1 in 2-index theories (Corrigan - Ramond Limit)

Signals Independent

of the

Composite Higgs

Drell-Yan production of heavy vectors

Vector Boson Fusion production of heavy vectors

Heavy Vectors Signals

R1,2

Drell Yan Production

q

q̄!

R1,2

Drell-Yan

1

10

10 2

10 3

10 4

500 1000 1500 2000

S=0.3g̃=2

Mll (GeV)Num

ber o

f eve

nts/

20 G

eV @

100

fb-1

1

10

10 2

10 3

10 4

500 1000 1500 2000

S=0.3g̃=5

Mll (GeV)Num

ber o

f eve

nts/

20 G

eV @

100

fb-1

√s = 14 TeV √s = 14 TeV

Drell-Yan

Undetectable

g̃ = 5

1

10

10 2

10 3

10 4

500 1000 1500 2000

S=0.3g̃=2!s=10 TeV

Mll (GeV)Num

ber o

f eve

nts/

20 G

eV @

10

fb-1

DY visible at small due to large mixing with W/Z

At small we observe near Vector-Axial degeneracy

Stronger coupling of the technirho to fermions.

Drell-Yan

10-1

1

10

10 2

500 1000 1500 2000

S=0.3g̃=2

MT3l (GeV)Nu

mbe

r of e

vent

s/20

GeV

@ 1

00 fb

-1

10-1

1

10

10 2

500 1000 1500 2000

S=0.3g̃=5

MT3l (GeV)Nu

mbe

r of e

vent

s/20

GeV

@ 1

00 fb

-1

√s = 14 TeV √s = 14 TeV

Peaks merge at large Mass because of the inversion point.

We still see a signal at large since now R decays via WZ which grows with

Vector-Axial Spectrum

MA (TeV)

Mas

s Sp

ectru

m (T

eV)

R±2,0

R±1,0 S=0.3

g̃=50.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Vector Resonances Branching Ratios

Mass (TeV)

BR(R

± 1)

tb

ffnl

W±Z

W±H

S=0.3g̃=5

10-6

10-5

10-4

10-3

10-2

10-1

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Mass (TeV)

BR(R

0 1)

ff

ll

W+W-

ZH

S=0.3g̃=5

10-6

10-5

10-4

10-3

10-2

10-1

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

For light masses (Below vector/axial inversion) and large : R1 -> HV is dominant. M_H = 200 GeV.

Vector Resonances Decays

M_H = 200 GeV.

Mass (TeV)

! (G

eV)

R±2

R±1

S=0.3g̃=5

10-1

1

10

10 2

10 3

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Mass (TeV)

! (G

eV)

R02

R01

S=0.3g̃=5

10-1

1

10

10 2

10 3

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

pp! HV

MA

!(p

p "

H W

+ ) (pb

)

MH=200 GeV, S=0.3, g̃=5#s=14 TeV#s=10 TeV

10-3

10-2

10-1

1

600 800 1000 1200 1400

MA

!(p

p "

H W

+ ) (pb

)

MH=400 GeV, S=0.3, g̃=5#s=14 TeV#s=10 TeV

10-3

10-2

10-1

1

600 800 1000 1200 1400