Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf ·...

26
Holograms of conformal Chern–Simons gravity Niklas Johansson Vienna University of Technology Uppsala, June 30, 2011 Work done with H. Afshar, B. Cvetkovi´ c, S. Ertl and D. Grumiller

Transcript of Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf ·...

Page 1: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Holograms of conformal Chern–Simons gravity

Niklas Johansson

Vienna University of Technology

Uppsala, June 30, 2011

Work done with H. Afshar, B. Cvetkovic, S. Ertl and D. Grumiller

Page 2: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

We study...

SCS =k

∫M3

(Γ ∧ dΓ +2

3Γ3)

[Deser, Jackiw & Templeton, ’82], [Horne & Witten, ’89]

• Topological. (Gauge symmetries: diffeos + Weyl.)

• ∂M3 6= ∅ =⇒ non-trivial dynamics.

• Holographic description: Partially massless gravitons, Brown–Yorkresponses, correlators... [arXiv:1107.xxxx]

• This talk: What does the Weyl symmetry give rise to at theboundary?

Page 3: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

We study...

SCS =k

∫M3

(Γ ∧ dΓ +2

3Γ3)

[Deser, Jackiw & Templeton, ’82], [Horne & Witten, ’89]

• Topological. (Gauge symmetries: diffeos + Weyl.)

• ∂M3 6= ∅ =⇒ non-trivial dynamics.

• Holographic description: Partially massless gravitons, Brown–Yorkresponses, correlators... [arXiv:1107.xxxx]

• This talk: What does the Weyl symmetry give rise to at theboundary?

Page 4: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

We study...

SCS =k

∫M3

(Γ ∧ dΓ +2

3Γ3)

[Deser, Jackiw & Templeton, ’82], [Horne & Witten, ’89]

• Topological. (Gauge symmetries: diffeos + Weyl.)

• ∂M3 6= ∅ =⇒ non-trivial dynamics.

• Holographic description: Partially massless gravitons, Brown–Yorkresponses, correlators... [arXiv:1107.xxxx]

• This talk: What does the Weyl symmetry give rise to at theboundary?

Page 5: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

We study...

SCS =k

∫M3

(Γ ∧ dΓ +2

3Γ3)

[Deser, Jackiw & Templeton, ’82], [Horne & Witten, ’89]

• Topological. (Gauge symmetries: diffeos + Weyl.)

• ∂M3 6= ∅ =⇒ non-trivial dynamics.

• Holographic description: Partially massless gravitons, Brown–Yorkresponses, correlators... [arXiv:1107.xxxx]

• This talk: What does the Weyl symmetry give rise to at theboundary?

Page 6: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

We study...

SCS =k

∫M3

(Γ ∧ dΓ +2

3Γ3)

[Deser, Jackiw & Templeton, ’82], [Horne & Witten, ’89]

• Topological. (Gauge symmetries: diffeos + Weyl.)

• ∂M3 6= ∅ =⇒ non-trivial dynamics.

• Holographic description: Partially massless gravitons, Brown–Yorkresponses, correlators... [arXiv:1107.xxxx]

• This talk: What does the Weyl symmetry give rise to at theboundary?

Page 7: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Warm-up: (2+1)-dimensional EH gravity

SEH =∫M3

√−g(R − 2Λ) Gauge symmetry: δgµν = ∇(µξν)

Boundary conditions: [Brown, Henneaux ’86]

gµν = gAdSµν + hµν = gAdS

µν +

O(1) O(1) O(y)O(1) O(y)

O(1)

µν

Diffeos that preserve the BCs: ξ± = ε±(x±) +O(y 2)

• Canonical realization =⇒ boundary charge!• Central extension of the algebra!• Gauge symmetry → global symmetry!

iLn, Lm = (n −m)Ln+m + c12 (n3 − n)δn+m

y

6

∂M3M3

Page 8: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Warm-up: (2+1)-dimensional EH gravity

SEH =∫M3

√−g(R − 2Λ) Gauge symmetry: δgµν = ∇(µξν)

Boundary conditions: [Brown, Henneaux ’86]

gµν = gAdSµν + hµν = gAdS

µν +

O(1) O(1) O(y)O(1) O(y)

O(1)

µν

Diffeos that preserve the BCs: ξ± = ε±(x±) +O(y 2)

• Canonical realization =⇒ boundary charge!• Central extension of the algebra!• Gauge symmetry → global symmetry!

iLn, Lm = (n −m)Ln+m + c12 (n3 − n)δn+m

y

6

∂M3M3

Page 9: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Warm-up: (2+1)-dimensional EH gravity

SEH =∫M3

√−g(R − 2Λ) Gauge symmetry: δgµν = ∇(µξν)

Boundary conditions: [Brown, Henneaux ’86]

gµν = gAdSµν + hµν = gAdS

µν +

O(1) O(1) O(y)O(1) O(y)

O(1)

µν

Diffeos that preserve the BCs: ξ± = ε±(x±) +O(y 2)

• Canonical realization =⇒ boundary charge!• Central extension of the algebra!• Gauge symmetry → global symmetry!

iLn, Lm = (n −m)Ln+m + c12 (n3 − n)δn+m

y

6

∂M3M3

Page 10: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Warm-up: (2+1)-dimensional EH gravity

SEH =∫M3

√−g(R − 2Λ) Gauge symmetry: δgµν = ∇(µξν)

Boundary conditions: [Brown, Henneaux ’86]

gµν = gAdSµν + hµν = gAdS

µν +

O(1) O(1) O(y)O(1) O(y)

O(1)

µν

Diffeos that preserve the BCs: ξ± = ε±(x±) +O(y 2)

• Canonical realization =⇒ boundary charge!

• Central extension of the algebra!• Gauge symmetry → global symmetry!

iLn, Lm = (n −m)Ln+m + c12 (n3 − n)δn+m

y

6

∂M3M3

Page 11: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Warm-up: (2+1)-dimensional EH gravity

SEH =∫M3

√−g(R − 2Λ) Gauge symmetry: δgµν = ∇(µξν)

Boundary conditions: [Brown, Henneaux ’86]

gµν = gAdSµν + hµν = gAdS

µν +

O(1) O(1) O(y)O(1) O(y)

O(1)

µν

Diffeos that preserve the BCs: ξ± = ε±(x±) +O(y 2)

• Canonical realization =⇒ boundary charge!• Central extension of the algebra!

• Gauge symmetry → global symmetry!

iLn, Lm = (n −m)Ln+m + c12 (n3 − n)δn+m

y

6

∂M3M3

Page 12: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Warm-up: (2+1)-dimensional EH gravity

SEH =∫M3

√−g(R − 2Λ) Gauge symmetry: δgµν = ∇(µξν)

Boundary conditions: [Brown, Henneaux ’86]

gµν = gAdSµν + hµν = gAdS

µν +

O(1) O(1) O(y)O(1) O(y)

O(1)

µν

Diffeos that preserve the BCs: ξ± = ε±(x±) +O(y 2)

• Canonical realization =⇒ boundary charge!• Central extension of the algebra!• Gauge symmetry → global symmetry!

iLn, Lm = (n −m)Ln+m + c12 (n3 − n)δn+m

y

6

∂M3M3

Page 13: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Warm-up: (2+1)-dimensional EH gravity

SEH =∫M3

√−g(R − 2Λ) Gauge symmetry: δgµν = ∇(µξν)

Boundary conditions: [Brown, Henneaux ’86]

gµν = gAdSµν + hµν = gAdS

µν +

O(1) O(1) O(y)O(1) O(y)

O(1)

µν

Diffeos that preserve the BCs: ξ± = ε±(x±) +O(y 2)

• Canonical realization =⇒ boundary charge!• Central extension of the algebra!• Gauge symmetry → global symmetry!

iLn, Lm = (n −m)Ln+m + c12 (n3 − n)δn+m

y

6

∂M3M3

Page 14: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Warm-up: (2+1)-dimensional EH gravity

SEH =∫M3

√−g(R − 2Λ) Gauge symmetry: δgµν = ∇(µξν)

Boundary conditions: [Brown, Henneaux ’86]

gµν = gAdSµν + hµν = gAdS

µν +

O(1) O(1) O(y)O(1) O(y)

O(1)

µν

Diffeos that preserve the BCs: ξ± = ε±(x±) +O(y 2)

• Canonical realization =⇒ boundary charge!• Central extension of the algebra!• Gauge symmetry → global symmetry!

iLn, Lm = (n −m)Ln+m + c12 (n3 − n)δn+m

y

6

∂M3M3

Page 15: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

Gauge sym: δgµν = ∇(µξν), δgµν = 2Ω(x)gµν

Boundary conditions: [arXiv:1107.xxxx].

gµν = eφ(x ,y)(

gAdSµν + hµν

)Gauge trafo’s that preserve the BCs: depends on BC on φ.

Page 16: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

Gauge sym: δgµν = ∇(µξν), δgµν = 2Ω(x)gµν

Boundary conditions: [arXiv:1107.xxxx].

gµν = eφ(x ,y)(

gAdSµν + hµν

)

Gauge trafo’s that preserve the BCs: depends on BC on φ.

Page 17: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

Gauge sym: δgµν = ∇(µξν), δgµν = 2Ω(x)gµν

Boundary conditions: [arXiv:1107.xxxx].

gµν = eφ(x ,y)(

gAdSµν + hµν

)Gauge trafo’s that preserve the BCs: depends on BC on φ.

Page 18: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

gµν = eφ(x ,y)(gAdSµν + hµν

)

φ ≡ 0 : diffeo → Vir 2, c = −c.

Weyl → trivial

φ ≡ ffixed(x) + . . . : diffeo + Weyl → Vir 2, c = −c

Weyl → trivial

φ = ffree(x) + . . . : diffeo + Weyl → Vir 2, c = −c

Weyl → nontrivial charge

Conservation of the Weyl charge =⇒ consistency conditions.

Page 19: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

gµν = eφ(x ,y)(gAdSµν + hµν

)φ ≡ 0 : diffeo → Vir 2, c = −c.

Weyl → trivial

φ ≡ ffixed(x) + . . . : diffeo + Weyl → Vir 2, c = −c

Weyl → trivial

φ = ffree(x) + . . . : diffeo + Weyl → Vir 2, c = −c

Weyl → nontrivial charge

Conservation of the Weyl charge =⇒ consistency conditions.

Page 20: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

gµν = eφ(x ,y)(gAdSµν + hµν

)φ ≡ 0 : diffeo → Vir 2, c = −c.

Weyl → trivial

φ ≡ ffixed(x) + . . . : diffeo + Weyl → Vir 2, c = −c

Weyl → trivial

φ = ffree(x) + . . . : diffeo + Weyl → Vir 2, c = −c

Weyl → nontrivial charge

Conservation of the Weyl charge =⇒ consistency conditions.

Page 21: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

gµν = eφ(x ,y)(gAdSµν + hµν

)φ ≡ 0 : diffeo → Vir 2, c = −c.

Weyl → trivial

φ ≡ ffixed(x) + . . . : diffeo + Weyl → Vir 2, c = −c

Weyl → trivial

φ = ffree(x) + . . . : diffeo + Weyl → Vir 2, c = −c

Weyl → nontrivial charge

Conservation of the Weyl charge =⇒ consistency conditions.

Page 22: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

gµν = eφ(x ,y)(gAdSµν + hµν

)φ ≡ 0 : diffeo → Vir 2, c = −c.

Weyl → trivial

φ ≡ ffixed(x) + . . . : diffeo + Weyl → Vir 2, c = −c

Weyl → trivial

φ = ffree(x) + . . . : diffeo + Weyl → Vir 2, c = −c

Weyl → nontrivial charge

Conservation of the Weyl charge =⇒ consistency conditions.

Page 23: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

gµν = eφ(x ,y)(gAdSµν + hµν

)Conservation of the Weyl charge =⇒ consistency conditions.

Simplest case: φ = φ(x+) and Ω = Ω(x+)

[Ln, Lm] = (n −m) Ln+m +c

+1

12(n3 − n) δn+m

[Ln, Lm] = (n −m) Ln+m +c

12(n3 − n) δn+m

[Jn, Jm] = 2k n δn+m

[Ln, Jm] = −mJn+m

Pure diffeos =⇒ Sugawara shift Ln → Ln +∑

k JkJn−k .

Thank you!

Page 24: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

gµν = eφ(x ,y)(gAdSµν + hµν

)Conservation of the Weyl charge =⇒ consistency conditions.

Simplest case: φ = φ(x+) and Ω = Ω(x+)

[Ln, Lm] = (n −m) Ln+m +c

+1

12(n3 − n) δn+m

[Ln, Lm] = (n −m) Ln+m +c

12(n3 − n) δn+m

[Jn, Jm] = 2k n δn+m

[Ln, Jm] = −mJn+m

Pure diffeos =⇒ Sugawara shift Ln → Ln +∑

k JkJn−k .

Thank you!

Page 25: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

gµν = eφ(x ,y)(gAdSµν + hµν

)Conservation of the Weyl charge =⇒ consistency conditions.

Simplest case: φ = φ(x+) and Ω = Ω(x+)

[Ln, Lm] = (n −m) Ln+m +c+1

12(n3 − n) δn+m

[Ln, Lm] = (n −m) Ln+m +c

12(n3 − n) δn+m

[Jn, Jm] = 2k n δn+m

[Ln, Jm] = −mJn+m

Pure diffeos =⇒ Sugawara shift Ln → Ln +∑

k JkJn−k .

Thank you!

Page 26: Holograms of conformal Chern Simons gravityquark.itp.tuwien.ac.at/~grumil/pdf/Uppsala2011.pdf · Holograms of conformal Chern{Simons gravity Niklas Johansson Vienna University of

Conformal Chern-Simons gravity

gµν = eφ(x ,y)(gAdSµν + hµν

)Conservation of the Weyl charge =⇒ consistency conditions.

Simplest case: φ = φ(x+) and Ω = Ω(x+)

[Ln, Lm] = (n −m) Ln+m +c+1

12(n3 − n) δn+m

[Ln, Lm] = (n −m) Ln+m +c

12(n3 − n) δn+m

[Jn, Jm] = 2k n δn+m

[Ln, Jm] = −mJn+m

Pure diffeos =⇒ Sugawara shift Ln → Ln +∑

k JkJn−k .

Thank you!