Chapter 7 Bounds and estimates for elements of...

Post on 24-Jun-2020

0 views 0 download

Transcript of Chapter 7 Bounds and estimates for elements of...

Chapter 7Bounds and estimates for elements of f (A)

Gerard MEURANT

January-February, 2012

1 Introduction

2 Analytic bounds

3 Examples

4 Numerical experiments

5 Estimates of traces and determinants

Introduction

We would like to compute bounds or estimates of

[f (A)]i ,j = (e i )T f (A)e j

I Analytic bounds

I Numerical experiments for f (λ) = 1/λ, exp(λ),√

λ

I Estimates of trace(A−1) and det(A)

Analytic boundsPerforming analytically one or two Lanczos iterations, we are ableto obtain bounds for the entries of A−1

TheoremLet A be a symmetric positive definite matrix. Let

s2i =

∑j 6=i

a2ji , i = 1, . . . , n

Using the Gauss, Gauss–Radau and Gauss–Lobatto rules∑k 6=i

∑l 6=i ak,iak,lal ,i

ai ,i∑

k 6=i

∑l 6=i ak,iak,lal ,i −

(∑k 6=i a

2k,i

)2≤ (A−1)i ,i

ai ,i − b +s2ib

a2i ,i − ai ,ib + s2

i

≤ (A−1)i ,i ≤ai ,i − a +

s2ia

a2i ,i − ai ,ia + s2

i

(A−1)i ,i ≤a + b − aii

ab

Compute analytically α1, η1, α2, the inverse of

J2 =

(α1 η1

η1 α2

)is

J−12 =

1

α1α2 − η21

(α2 −η1

−η1 α1

)For Gauss–Radau we have to modify the (2, 2) element of J2

Using the nonsymmetric Lanczos algorithm

TheoremLet A be a symmetric positive definite matrix and

ti =∑k 6=i

ak,i (ak,i + ak,j)− ai ,j(ai ,j + ai ,i )

For (A−1)i ,j + (A−1)i ,i we have the two following estimates

ai ,i + ai ,j − a + tia

(ai ,i + ai ,j)2 − a(ai ,i + ai ,j) + ti,

ai ,i + ai ,j − b + tib

(ai ,i + ai ,j)2 − b(ai ,i + ai ,j) + ti

If ti ≥ 0, the first expression with a gives an upper bound and thesecond one with b a lower bound

Other functions

We have to compute f (J) for

J =

(α ηη ξ

)

Proposition

Let δ = (α− ξ)2 + 4η2

γ = exp

(1

2(α + ξ −

√δ)

), ω = exp

(1

2(α + ξ +

√δ)

)The (1, 1) element of the exponential of J is

1

2

[γ + ω +

ω − γ√δ

(α− ξ)

]

TheoremLet

λ+ =1

2(α + ξ +

√δ), λ− =

1

2(α + ξ −

√δ)

The (1, 1) element of f (J) is

1

2√

δ

[(α− ξ)(f (λ+)− f (λ−)) +

√δ(f (λ+) + f (λ−))

]

We can obtain analytic bounds for the (i , i) element of f (A) forany function for which we can compute f (λ+) and f (λ−)

Examples

Example F1This is an example of dimension 10

A =1

11

10 9 8 7 6 5 4 3 2 19 18 16 14 12 10 8 6 4 28 16 24 21 18 15 12 9 6 37 14 21 28 24 20 16 12 8 46 12 18 24 30 25 20 15 10 55 10 15 20 25 30 24 18 12 64 8 12 16 20 24 28 21 14 73 6 9 12 15 18 21 24 16 82 4 6 8 10 12 14 16 18 91 2 3 4 5 6 7 8 9 10

The inverse of A is a tridiagonal matrix

A−1 =

2 −1−1 2 −1

. . .. . .

. . .

−1 2 −1−1 2

Example F3This is an example proposed by Z. Strakos. Let Λ be a diagonalmatrix

λi = λ1 +

(i − 1

n − 1

)(λn − λ1)ρ

n−i , i = 1, . . . , n

Let Q be the orthogonal matrix of the eigenvectors of thetridiagonal matrix (−1, 2, −1). Then the matrix is

A = QTΛQ

We will use λ1 = 0.1, λn = 100 and ρ = 0.9

Example F4The matrix is arising from the 5–point finite differenceapproximation of the Poisson equation in a unit square with anm ×m meshThis gives a linear system Ax = c of order m2

A =

T −I−I T −I

. . .. . .

. . .

−I T −I−I T

Each block is of order m and

T =

4 −1−1 4 −1

. . .. . .

. . .

−1 4 −1−1 4

Diagonal elements

Example F1, GL, A−15,5 = 2

rule Nit=1 2 3 4 5 6 7

G 0.3667 1.3896 1.7875 1.9404 1.9929 1.9993 2

G–R bL 1.3430 1.7627 1.9376 1.9926 1.9993 2.0000 2

G–R bU 3.0330 2.2931 2.1264 2.0171 2.0020 2.0001 2

G–L 3.1341 2.3211 2.1356 2.0178 2.0021 2.0001 2

Example F3, GL, n = 100, A−150,50 = 4.2717

Nit G G–R bL G–R bU G–L

10 2.7850 3.0008 5.1427 5.1664

20 4.0464 4.0505 4.4262 4.4643

30 4.2545 4.2553 4.2883 4.2897

40 4.2704 4.2704 4.2728 4.2733

50 4.2716 4.2716 4.2718 4.2718

60 4.2717 4.2717 4.2717 4.2717

Example F4, GL, n = 900, A−1150,150 = 0.3602

Nit G G–R bL G–R bU G–L

10 0.3578 0.3581 0.3777 0.3822

20 0.3599 0.3599 0.3608 0.3609

30 0.3601 0.3601 0.3602 0.3602

40 0.3602 0.3602 0.3602 0.3602

Non–diagonal elements with the nonsymmetric Lanczosalgorithm

Example F1, GNS, A−12,2 + A−1

2,1 = 1

rule Nit=1 2 4 5 6 7

G 0.4074 0.6494 0.9512 0.9998 1.0004 1

G–R bL 0.6181 0.8268 0.9998 1.0004 1.0001 1

G–R bU 2.6483 1.4324 1.0035 1.0012 0.9994 1

G–L 3.2207 1.4932 1.0036 1.0012 0.9993 0.9994

Example F3, GNS, n = 100, A−150,50 + A−1

50,49 = 1.4394

Nit G G–R bL G–R bU G–L

10 0.8795 0.9429 2.2057 2.2327

20 1.3344 1.3362 1.5535 1.5839

30 1.4301 1.4308 1.4510 1.4516

40 1.4386 1.4387 1.4404 1.4404

50 1.4394 1.4394 1.4395 1.4395

60 1.4394 1.4394 1.4394 1.4394

Example F4, GNS, n = 900, A−1150,150 + A−1

150,50 = 0.3665

Nit G G–R bL G–R bU G–L

10 0.3611 0.3615 0.3917 0.3979

20 0.3656 0.3657 0.3678 0.3680

30 0.3663 0.3664 0.3666 0.3666

40 0.3665 0.3665 0.3665 0.3665

Non–diagonal elements with the block Lanczos algorithm

Let (J−1k )1,1 the 2× 2 (1, 1) block of the inverse of Jk with

Jk =

Ω1 ΓT

1

Γ1 Ω2 ΓT2

. . .. . .

. . .

Γk−2 Ωk−1 ΓTk−1

Γk−1 Ωk

∆1 = Ω1, ∆i = Ωi − Γi−1Ω

−1i−1Γ

Ti−1, i = 2, . . . , k

Ck = ∆−11 ΓT

1 ∆−12 ΓT

2 · · ·∆−1k−1Γ

Tk−1∆

−1k ΓT

k

(J−1k+1)1,1 = (J−1

k )1,1 + Ck∆−1k+1C

Tk

Going from step k to step k + 1 we compute Ck+1 incrementallyNote that we can reuse Ck∆−1

k+1 to compute Ck+1

Example F3, GB, n = 100, A−12,1 = −3.2002

Nit G G–R bL G–R bU G–L

2 -3.0808 -3.0948 -3.9996 -4.1691

3 -3.1274 -3.1431 -3.5655 -3.6910

4 -3.2204 -3.2187 -3.2637 -3.5216

5 -3.2015 -3.2001 -3.1974 -3.2473

6 -3.1969 -3.1966 -3.1964 -3.1969

7 -3.1970 -3.1972 -3.1995 -3.1994

8 -3.1993 -3.1995 -3.2008 -3.1999

9 -3.2001 -3.2001 -3.2005 -3.2008

10 -3.2002 -3.2002 -3.2002 -3.2004

We see that we obtain good approximations but not always boundsAs a bonus we also obtain estimates of A−1

1,1 and A−12,2

Example F4, GB, n = 900, A−1400,100 = 0.0597

Nit G G–R bL G–R bU G–L

10 0.0172 0.0207 0.0632 0.0588

20 0.0527 0.0532 0.0616 0.0621

30 0.0590 0.0591 0.0597 0.0597

40 0.0597 0.0597 0.0597 0.0597

Note that for this problem the Gauss rule gives a lower bound,Gauss–Radau a lower and an upper bound

Dependence on the eigenvalue estimates

We take Example F4 with m = 6We look at the number of Lanczos iterations needed to obtain anupper bound for the element (18, 18) with four exact digits

Example F4, GL, n = 36

a=10−4 10−2 0.1 0.3 0.4 1 6

15 13 11 11 8 8 9

With the exact eigenvalue a = 0.3961 we need 9 Lanczos iterationsNote that it works even when a > λmin

Bounds for the elements of the exponential

Example F3, GL, n = 100, exp(A)50,50 = 5.3217 1041. Results×10−41

Nit G G–R bL G–R bL G–L

2 0.0000 0.0000 7.0288 8.8014

3 0.0075 0.2008 5.6649 6.0776

4 1.0322 2.5894 5.3731 5.4565

5 3.9335 4.7779 5.3270 5.3385

6 5.1340 5.2680 5.3235 5.3232

7 5.3070 5.3178 5.3218 5.3219

8 5.3203 5.3209 5.3218 5.3218

9 5.3212 5.3213 5.3217 5.3217

10 5.3215 5.3217 5.3217 5.3217

11 5.3217 5.3217 5.3217 5.3217

Convergence is faster than with A−1

Example F4, GNS, n = 900, exp(A)50,50 + exp(A)50,49 = 83.8391

rule Nit=2 3 4 5 6 7

G 63.4045 81.4124 83.6607 83.8318 83.8389 83.8391

G–R bL 108.0918 86.3239 83.8796 83.8420 83.8392 83.8391

G–R bU 76.1266 83.7668 83.7781 83.8383 83.8391 83.8391

G–L 163.8043 90.9304 84.1878 83.8530 83.8395 83.8391

Convergence is quite fast

Bounds for the elements of the square root

Example F4, GL, n = 900, (√

A)50,50 = 1.9189

Nit G G–R bL G–R bU G–L

2 1.9319 1.8945 1.9255 1.8697

3 1.9220 1.9112 1.9209 1.9038

4 1.9201 1.9160 1.9197 1.9140

5 1.9195 1.9176 1.9193 1.9169

6 1.9192 1.9183 1.9191 1.9180

7 1.9191 1.9186 1.9190 1.9185

8 1.9190 1.9187 1.9190 1.9187

9 1.9190 1.9188 1.9190 1.9188

10 1.9190 1.9189 1.9190 1.9189

11 1.9190 1.9189 1.9190 1.9189

12 1.9190 1.9189 1.9189 1.9189

13 1.9189 1.9189 1.9189 1.9189

Estimates of traces and determinants

Bai and Golub gave analytic bounds based on the first threemomentsLet

µr = tr(Ar ) =n∑

i=1

λri =

∫ b

aλr dα

be the moments related to α, the measure (that we do not knowexplicitly) with steps at the eigenvalues of AThe first three moments are easily computed

µ0 = n, µ1 = tr(A) =n∑

i=1

ai ,i , µ2 = tr(A2) =n∑

i ,j=1

a2i ,j = ‖A‖2F

However, these bounds are sometimes far from being sharp

One can compute numerically more moments and use theChebyshev algorithmmoments → Jacobi matrix → quadrature rule → µ−1

Example F4, n = 900, Chebyshev, trace(A−1) = 512.6442

k est.

1 225.0000

2 296.7033

3 344.6869

4 375.8398

5 400.0648

6 418.2138

7 433.1216

8 444.9913

9 455.0122

10 463.2337

The moment matrices are ill–conditioned and after k = 10 they arenot positive definite anymore

To solve this problem we use the modified Chebyshev algorithmwith shifted Chebyshev polynomials as auxiliary polynomials

C0(λ) ≡ 1,

(λmax − λmin

2

)C1(λ) = λ−

(λmax + λmin

2

)

(λmax − λmin

4

)Ck+1(λ) =

(λ− λmax + λmin

2

)Ck(λ)

−(

λmax − λmin

4

)Ck−1(λ)

We compute the trace of the matrices Ci (A), i = 0, . . . , k whichare the modified moments

Example F4, n = 900, modified moments, trace(A−1) = 512.6442

k est.

5 400.0648

10 463.2560

15 489.5383

20 502.0008

25 508.0799

30 510.9301

35 512.1385

40 512.5469

Estimates of the determinant

It is based on the following result

Proposition

Let A be a symmetric positive definite matrix

ln(det(A)) = tr(ln(A))

Then

tr(ln(A)) =n∑

i=1

lnλi =

∫ b

alnλ dα

Example F4, n = 400, modified moments, det(A) = 7.7187 10206

k est.

2 1.8705 10217

4 1.4990 10209

6 4.9892 10207

8 1.7268 10207

10 1.1338 10207

12 9.3701 10206

14 8.5330 10206

16 8.1315 10206

18 7.9273 10206

20 7.8210 10206

Z. Bai and G.H. Golub, Bounds for the trace of theinverse and the determinant of symmetric positive definitematrices, Annals Numer. Math., v 4 (1997), pp. 29–38

G.H. Golub and G. Meurant, Matrices, moments andquadrature, in Numerical Analysis 1993, D.F. Griffiths andG.A. Watson eds., Pitman Research Notes in Mathematics,v 303 (1994), pp. 105–156

G. Meurant, Estimates of the trace of the inverse of asymmetric matrix using the modified Chebyshev algorithm,Numerical Algorithms, v 51 n 3 (2009), pp. 309–318