Ch 01 Introduction to complex fluids - CHERIC · 2004-09-10 · Ch 01 Introduction to complex...

Post on 04-Jul-2020

4 views 0 download

Transcript of Ch 01 Introduction to complex fluids - CHERIC · 2004-09-10 · Ch 01 Introduction to complex...

Ch 01 Introduction to complex fluids

Solid ------------------- Liquid

Ideal Solid ----- Most Materials ----- Ideal Fluid

Elastic ----- Viscoelastic ----- Viscous

Strain

time0

Stress

time0

Stress

time0

Stress

time0

Solid Like ---------- Liquid LikeIdeal Solid ----- Most Materials ----- Ideal FluidPurely Elastic ----- Viscoelastic ----- Purely Viscous

γτ G= γητ &=

( ) ( )( )T Tpp p p pWe u u u u u

τ τ τ τ β∂⎛ ⎞

+ + ⋅∇ − ∇ ⋅ − ⋅∇ = ∇ + ∇⎜ ⎟∂⎝ ⎠

( )2

, , , ,

Re (1 )

0

pp

p

f

u u u p ut

u

τ λ β η

β

τ

τ

=

∂⎛ ⎞+ ⋅∇ = −∇ +∇⋅ + − ∇⎜ ⎟∂⎝ ⎠∇ ⋅ =

u

Time-dependent Viscoelastic Behavior

• Old Testament Prophetess who said :"The Mountains Flowed before the Lord"

• Everything Flows if you wait long enough!

• Deborah Number, De - The ratio of a characteristic time of a material (τ) to a characteristic time of the process (Τ)

De = τ/Τ

Rheology

• The science of flow and deformation of matter (complex fluids)

• Viscoelastic• Deborah number• Processing technology

De = τ/Τ

Mathematical rheologyMathematical theology

ABS

ABS (Acrylonitrile-Butadiene-Styrene)

Particle size

Gel content

Graft ratio

Impact strength

Hard-ness

Tensile strength

Flexural strength

VST gloss

ABS-4 3075 86 42 26.7 96.4 402 582 93.7 103.9

ABS-5 3100 82 69 24.1 95.3 393 567 95.1 101.7

G’ and η* of ABS

0.01 0.10 1.00 10.00 100.00 1000.00FREQUENCY

100

1000

10000

100000G

',VIS

CO

SIT

Y

ABS-4

ABS-5

G’ vs. graft ratio

20 40 60 80 100 120Graft ratio

10

100

1000

10000

100000

G' a

t w=0

.1

Sheet grade ( ABS)

• : , • Sheet (gel)• 1 test resin 3• Test - Claim•

••• ???

Competition with HIPS

• ABS,HIPS • ABS , HIPS• : ABS 1500$/MT, HIPS 800$/MT• : ABS 3.5t, HIPS 4-5t•• ABS HIPS

• Sheet down•• ???

Kingdom of rheology14th ICR, Aug.22-27, Seoul

• Computational rheology• Flow instability• Foams, emulsions & surfactants• Foods & biomaterials• Materials processing• Microstructural modeling• Nanorheology & microfluidics• Non-Newtonian fluid mechanics• Polymer melts• Polymer solutions• Rheometry & experimental methods• Solids & composites• Suspensions & colloids

Challenges

• Biorheology– Hemorheology, microfluidics

• IT rheology– ACF rheology, coating

• Nanorheology– Clay, CNT

• Modeling and simulation

BiorheologyCause of death(USA)

American Heart Association 2003

Cardiovascular Disease 49.9%

Cancer 32.4%

Accidents 7.1% Etc. 10.4%

Extra-corporeal life supporter

RBC deformation and hemolysis

Diabetes Association

• Most diabetics have hyperviscosity by one or other mechanism. (Dintenfass L, 1989)

• The Complication of diabetics ( Diabetic Retinopathy, Nephropathy, Nervous Diease )

Heathy retinal capillariesHeathy retinal capillaries

Diabetic retinal capillariesDiabetic retinal capillaries

Diabetic RetinopathyDiabetic Retinopathy

Introduction – RBC

In pure shear flow

Result

EI = 0.024979 EI = 0.03977 EI = 0.2453 EI = 0.348132

aspect ratio = 1.05major axis = 107.9minor axis =102.7

aspect ratio = 1.12major axis = 97.9minor axis = 87.7

aspect ratio = 1.65major axis = 120.8minor axis = 73.2

aspect ratio = 2.0681073 major axis = 134.48761 minor axis = 65.029320

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 200 400 600 800 1000 1200

Shear rate

Elongational Index

EI = 0.392697 EI = 0.414989

aspect ratio = 2.29major axis = 140.1minor axis = 61.1

aspect ratio = 2.42major axis = 145.2minor axis = 60.0

BLOOD VISCOSITY

plasmaviscosityplasma

viscosityerythrocyte

deformabilityerythrocyte

deformability leukocyteshematocriterythrocyteaggregationerythrocyteaggregation

Early diagnosis of heart disease

Normal & Patients

ASI20 30 40 50 60 70 80 90

Avg

EI 0

.3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40NormalPatient

ASI 20 40 60 80 100 120

Avg

EI 3

00.380.400.420.440.460.480.500.520.54

NormalPatient

Shear rate= 0.3 Shear rate= 30

stress (Pa)0.1 1 10 100 1000

EI

0.0

0.2

0.4

0.6

0.8 pure shear flow - newly testedcenterline of 4:1 contraction

Glass size vs. Coating MethodIT rheology

SpinSlit/Spin

Slit

D layer (B)D layer (top) P layerT electode B electrode SealGlass In

Washing

Coat

Dry

Washing MgO Depo.Coat

Expose

Develop

Sputtering DispenseGlass In

Upper layer

Repair

Insp CoatDry DryCleaning PR Coating

Dry FireExpose

Develop

Etch/Strip

Fire Fire

Fire

P layerGlass In RibD electrode D layerU layer

Fire

Dry

Coat

Cleaning Dry(R)

Expose

Develop

Expose

Coat(G)

Dry(G)

Develop

Coat(R)

Coat(B)

Expose

Develop

Fire

Dry(B)

Dry

Coat

Expose

Develop

Repair

Insp

Fire

Coat Coat

Dry

Glass In

Lower layer

Dry

DFR Lami.Fire

Expose

Strip

Develop

Sandblast

Fire

• 3-dimensional• Time dependent• Squeezing flow

(pseudo steady state)• Non-isothermal

(temp distribution withtime and position)

• Curing reaction• Particulate flow• Complex flow field

and geometry

particle and stress distributionstypical rheology problem

PP/clay

Electric field

Exfoliation

+II

MRC 2003

Nanorheology

Why? What happens?

•PP/Clay E2•PP/Clay

Optics measured at 180C. (x 100)

layer-stacking destructionseparation of silicate layers

(2D)⏐ 27Apr2003⏐G-NewtonFluidSimulationattime .00

0 1 2 3 4X

-3

-2

-1

0

1

Y

(2D)⏐ 27Apr2003⏐G-NewtonFluidSimulationattime .00 (2D)⏐ 27Apr2003⏐G-NewtonFluidSimulationattime .00

0 1 2 3 4X

-3

-2

-1

0

1

Y

(2D)⏐ 27Apr2003⏐G-NewtonFluidSimulationattime .00 (2D)⏐ 27Apr2003⏐G-NewtonFluidSimulationattime .00

0 1 2 3 4X

-3

-2

-1

0

1

Y

(2D)⏐ 27Apr2003⏐G-NewtonFluidSimulationattime .00 (2D)⏐ 27Apr2003⏐G-NewtonFluidSimulationattime .00

0 1 2 3 4X

-3

-2

-1

0

1

Y

(2D)⏐ 27Apr2003⏐G-NewtonFluidSimulationattime .00

Simulation & modeling

Flow past a confined cylinder

We

0.1 0.3 0.5 0.7 0.9 1.10.0 0.2 0.4 0.6 0.8 1.0 1.2

Dim

ensi

onle

ss D

rag

116

118

120

122

124

126

128

130

132

134Liu et al. (1998) : DEVSS-G/SUPGFan et al. (1999) : h-p FEMAlves et al. (2001) : FVMCaola et al. (2001) : RK4+DEVSS-G/DGOwens and Chauviere (2002) : Sprectral MethodUM2UM4

chain

dumbbell

Modeling: BD, DPD, FPD, LB,…

( )2

, , , ,

Re (1 )

0

pp

p

f

u u u p ut

u

τ λ β η

β

τ

τ

=

∂⎛ ⎞+ ⋅∇ = −∇ +∇⋅ + − ∇⎜ ⎟∂⎝ ⎠∇ ⋅ =

u

Critical to precise process control- precision injection, coating, micro-channel flow …

• Separation of long DNA molecules in a microfabricated entropic trap array, Science, 2000.