Catalytic, StereoselectiveDihalogenation of...

Post on 17-Mar-2020

10 views 0 download

Transcript of Catalytic, StereoselectiveDihalogenation of...

Topic ReviewIevgeniia Kovalova

14. 04. 2016

Catalytic,StereoselectiveDihalogenationofAlkenes

Cresswell,A.J.;Eey,S.T.-C.;Denmark,S.E.Angew.Chem.,Int.Ed.2015,54,15642

2

Introduction

C C

X

R1

R2

R3

R4

C CR1

R2

R3

R4

Br Br C CR1

R2

R3

R4

BrBr

δ+

δ-

π-complex

C C

Br

R1

R2

R3

R4

Br

C C

X

R1

R2

R3

R4

Roberts,Kimball,jacs,1937,59,946Robinson,InstituteofChem.OfGreatBritainandIreland,1932

3S.A.Snyder, Z.-Y.Tang, R.Gupta, J.Am.Chem.Soc.2009,131, 5744–5745

Enantioselective alkenedihalogenation insynthesisofnaturalproduct

O

O

O

OH

MOMO MeMe

O

O

O

OH

MOMO MeMe

ClCl

OBH

OO

O

O

OH

HO MeMeClCl

(-)-napyradiomycin

chiral additive(4 equiv)

THF, rt, 1hthen Cl2CH2Cl2

-78 ˚C, 20 min

93%, 93.5:6.5 er(97.5:2.5 er after recryst.)

chiral additive

4S.A.Snyder, Z.-Y.Tang, R.Gupta, J.Am.Chem.Soc.2009,131, 5744–5745

O

O

O

OH

MOMO MeMe

ClCl

O

O

O

OH

MOMO MeMe

5K.C.Nicolaou, N.L.Simmons, Y.Ying, P.M.Heretsch, J.S.Chen, J.Am.Chem.Soc. 2011,133, 8134–8137

Cl

OHCl

Cl

OHClMe

Cl

OHClCl

63%, er=90.5:9.5 65%, er=72:28 81%, er=85.5:14.5

Enantioselective, catalyticalkenedihalogenation

R2

R1 OH

4-Ph(C6H4)ICl2 (1.6 equiv)

(DHQ)2PHAL (20 mol %)CH2Cl2 (0.05 M)

-78 ˚C

R1 OHCl

R2 Cl

N

MeO

ON N

H

Et

N

OMe

ONN

Et

H

(DHQ)2PHAL

Ph

I ClCl

4-Ph(C6H4)ICl2

Cl-agentcatalyst

6

7

EtO

O

OEt

O

Br Br

R Ar

unreactive Br+ sourse

EtO

O

OEt

O

Br Br

Me*L Br

δ+

δ−

R Ar

Br

Br

Chiral ligandL*

Br- sourseM Br

enantioenriched dibromides

EtO

O

OEt

O

Br Br

HO Ph HO PhBr

Br

O

O OHOH

2-NpNp-2

Np-2 2-Np

(1.5-2.0 equiv.) (20-100 mol%)

BrTi(Oi-Pr)3 (1 equiv)

2:1 MeCN/Tolrt, 12-60h

D.X.Hu, G.M.Shibuya,N.Z.Burns, J.Am.Chem.Soc. 2013,135, 12960–12963

OH

Br

Br

20 mol % of diol: 60%, ee=76%100 mol % of diol: 63%, ee=86%

OH

Br

Br

20 mol % of diol: 47%, ee=79%100 mol % of diol: 65%, ee=88%

F

OH

Br

Br

20 mol % of diol: 60%, ee=85%100 mol % of diol: 64%, ee=90%

Cl

OH

Br

Br

20 mol % of diol: 51%, ee=84%100 mol % of diol: 64%, ee=90%

Br

Enantioselective, catalyticalkenedibromination

8D.X.Hu, G.M.Shibuya,N.Z.Burns, J.Am.Chem.Soc. 2013,135, 12960–12963

HO Ph

OH

BrTi(Oi-Pr)3+

EtO

O

OEt

O

Br Br

+

3 i-PrOH

EtO

O

OEt

O

Br Br

Ti O

PhBrO

O

OH

EtO

O

OEt

OTi O

PhBrO

O

Br

Br

EtO

O

OEt

OTi OBrO

O

Br

BrPh

HO Ph

Br

Br

O

O OEt

Br

OEt

Ti(i-PrO)3

+

δ+

δ−

9D.X.Hu, F.J.Seidl,C.Bucher,N.Z.Burns,J.Am.Chem.Soc.2015,137,3795−3798

R2

R3

HOR1

R2HO

NBS (1.05 equiv)ClTi(Oi-Pr)3 (1.1 equiv)

13 (10-30 mol %)

hexanes-20 ˚C, 4-12 h

N

O

O

Br

NBS

N

HOt-Bu

t-Bu

OH

PhPh

13

R3

ClR1

Br

(chiral catalist)

(S)(R)

PhHO

88%, ee=89%, cr >20:1

PhHO

94%, ee=89%, cr=8:1

PhHO

89%, ee=92%, cr=18:1

ClCl

Me

Cl

Br

Br

Br Me

Br

ClHO

86%, ee=94%, cr=6:1

Enantioselective, catalyticalkenechlorobromination

10

OH

BrMe

OTi

LnClBr

Me OTiLn

Cl

NBS, ClTi(Oi-Pr)3

20 mol%(R,S)-13

20 mol%(S,R)-13

OH OH

BrCl

Br Cl

(S)-perillyl alcohol95%, cr=17:1 88%, cr>20:1

OH

NBS, ClTi(Oi-Pr)320 mol% (R,S)-13

hex, -20 ˚C OH

BrCl

DMP, NaHCO3

BrCl

O

H

BrCl

Ph3P=CH2

(+)-bromochloromyrcene

11

Me Me

Me

OH

Me Me

OH

NBS, (1.05 equiv)BrTi(Oi-Pr)3 (1.10equiv)

13 (20 mol%)

hex, -20 ˚C

Br

MeBr

Me Me

Me

OH Me Me

OHBr

BrMe

NBS, (1.05 equiv)BrTi(Oi-Pr)3 (1.10equiv)

13 (20 mol%)

hex, -20 ˚C

74%, 92% ee

78%, 95% ee

Ph OHPh OH

ClCl

t-BuOCl (1.05 equiv)ClTi(Oi-Pr)3 (1.10 equiv)

13 (30 mol%)

hex, -20 ˚C61%, 90% ee

12

X XXX X X+

moleculardihalogen

separate halenium and halide equivalents

dihalogen equivalent

Dihalogenating Reagents

R2

R1 R3

R4 BrR2

R3R4

R1Br

1 2

1 + 2NaBr + 1/2 Na2[B2(O2)2(OH)4] 2 Na3BO3 + H2O

1 + ZnBr2 + Pb(OAc)4 2 + Zn(OAc)2 + Pb(OAc)2

K.W.Rosenmund,W.Kuhnhenn,Ber.Dtsch.Chem.Ges. 1923,56, 1262–1269T.Schlama, K.Gabriel, V.Gouverneur, C.Mioskowski,Angew.Chem.Int.Ed.Engl.1997,36, 2342–2344

NH

Br3

Et4N+ Cl3-

Mioskowski's reagentslow release of Cl2 on storage

[R4N]+[(X2)nX]-

13

X

acid H +

X

acid H

δ+δ−

acid Xδ− δ+

+

H

acid

X

+ acid

Xδ− δ+

base + X base Xδ−δ+

base +X

PTCorganic phase

aqueousor solid phase

substrate

X

Brønsted acid

Lewisacid

Lewisbase

Phasetransfer

Catalysisproblem

14

Brønsted acidcatalysis

Brønsted acidcatalyzedalkenedihalogenation usingseparateX+andX-sources

acid HX

X

acid H

δ+δ−

δ−

H

acid Xδ− δ+

+

XX2

acid H

-

-

R2R1

HR2R1X

acid

acid

XR1

XR2

X

H

δ+δ−

15

Brønsted acidcatalysis

Brønsted acidcatalyzedalkenedihalogenation usinganX+reagentcombinedwithacomplexanionofthehalideasanX- sources

acid HX

X

acid H

δ+δ−

δ−

H

acid Xδ− δ+

+

R2R1

HR2R1X

acid

acid

X-MXnR1

XR2

X

H

δ+δ−

+ MXn

MXn

16

Brønsted acidcatalysis

Brønsted acidcatalyzedalkenedihalogenation usingadihalogenequivalentasasinglereagent

acid HX

X

acid H

δ+

δ−δ−

R2R1

R2R1X

R1

XR2

X

X

X

acid H X

+

X2

acid H-

-

17

Lewisacidcatalysis

Lewisacidcatalyzedalkenedihalogenation usingseparateX+andX- sourses

acidX

X

acid

δ+δ−

H

acid Xδ− δ+

+

R2R1

R2R1X

acid

XR1

XR2

X

δ+ δ−

XX2

acid-

-

acid

18

Lewisacidcatalysis

Lewisacidcatalyzedalkenedihalogenation usingadihalogen equivalentasasinglereagent

acidX

X

acid

δ+

δ−δ−

R2R1

R2R1X

R1

XR2

X

X

X

acid X

+

acid-

-

X2

19

Lewisbasecatalysis

Lewisbasecatalyzedalkenedihalogenation usingseparateX+andX- sources

baseX

δ+ δ−

R2R1

R2R1X

R1

XR2

X

X

X

+

basebase

Xbase +

X2

base-

-

X-

20

Lewisbasecatalysis

Lewisbasecatalyzedalkenedihalogenation usingadihalogenequivalentasasinglereagent

baseX

δ+ δ−

R2R1

R2R1X

R1

XR2

X

X

X

+

base

base

Xbase +

X

XX2

base-

-X

21

PhaseTransferCatalysis

Cationicphasetransfer-catalized alkenedihalogenation

PTC

organic

aq. or solid

X3R1

R2 HR1

R2H

XX

PTC X

PTC XR1

XR2

X

+

PTC X3 M X+ M X3 PTC X+

(NR4+, PR4

+ )

Y.-M.Wang, J.Wu, C.Hoong, V.Rauniyar, F.D.Toste, J.Am.Chem.Soc. 2012, 134,12928–12931

22

PhaseTransferCatalysis

Enantioselective halocyclization via chiralanionphasetransfercatalysis

Y.-M.Wang, J.Wu,C.Hoong,V.Rauniyar, F.D.Toste, J.Am.Chem.Soc. 2012,134, 12928–12931

Me

NH

O Ph

O

N Ph

Me Br"Br+" sourse (1.3 equiv)chiral catalyst (5 mol %)

Na3PO4 (4.0 equiv)p-xylene/hex

(1:1 v/v, 0.025 M)

N NC6Me5

Br NNC6Me5

(BrF4)3

"Br+" sourse (i-Pr)3Si

(i-Pr)3Si

OO P

O

OH

i-Pr

i-Pr

i-Pr

i-Pr

i-Pri-Pr

chiral lipophilic catalyst

(precursor to chiral PT catalyst)

82%, 94% ee

23

PhaseTransferCatalysis

Enantioselective halocyclization via chiralanionphasetransfercatalysis

W.Xie, G.Jiang, H.Liu, J.Hu, X.Pan,H.Zhang, X.Wan, Y.Lai, D.Ma, Angew.Chem.Int.Ed. 2013,52,12924–12927

"Br+" sourse (1.3 equiv)chiral catalyst (10 mol %)

Na3PO4 (4.0 equiv)p-xylene/hex

(1:1 v/v, 0.025 M)

N N Br

"Br+" sourse(i-Pr)3Si

(i-Pr)3Si

OO P

O

OH

i-Pr

i-Pr

i-Pr

i-Pr

i-Pri-Pr

chiral lipophilic catalyst

quantit., 95% ee

NTs

NHCO2Me

NTs

N

Br

HCO2Me

CF3

F3C

24

PTC

organic

solid

R1R2 H

R1R2H

X

PTCR1

XR2

X

+N

N

XX

R

X

N

NR

PTC

N

NR

PTCN

N

XX

R

+

N

NR

XPTCN

NR

+

N

NR

X X X

PhaseTransferCatalysis

Anionicphasetransfer-catalyzedalkenedihalogenation

25

RR

XR H

H RX

X XC2h

C2

R

X

X

R

Cs

(homotopic termini)

(achiral)

RX

R RH H

X

X XC2v

Cs

(enantiotopic termini)

Ra b

R

X

X

R

C2

(enantiomers)

R

X

X

Ra

b

R2R1X

Cs

R1 HH R2

X

X X

C1

R1

X

X

R2

C1(constitutionallyheterotopic termini)

(enantiomers)

a b

R1

X

X

R2

a

b

R1X R1 R2

H HX

X X

C1

R1

X

X

R2

C1(constitutionallyheterotopic termini)

(enantiomers)

a b

R1

X

X

R2

a

bR2

Cs

(Enantiodetermining stepshighlightedwithboldarrows)

Symmetry-basedalkenedihalogenation via haliranium ions

chiral

achiral chiral

chiral

26

R1R2

X

R1 HH R2

a b

R1 HH R2a b

X

(racemization)

Cat*, Xfast

Cat*, X

slow

R1

XR2

X

R1

XR2

X

X

X

R1R2

X

R1 HH R2

a b

R1 HH R2a b

X

(epimerization)

fast

slow

R1

XR2

X

R1

XR2

X

Cat*, X

Cat*, X

Cat*

Cat*

X

X

Dynamickineticresolution(withsubstrate- orcatalyst-controlledhalideattackatcarbon“a”

Dynamickineticasymmetrictransformation(type1)(withsubstrate- orcatalyst-controlledhalideattackatcarbon“a”

Enantiodetermining nucleophilicattackofhalideionbykineticresolutionofhalenium ions

27

R1R2

X

R1 HH R2

a b

R1 HH R2a b

X

(racemization)

Cat*, X

attack at a

Cat*, X

attack at b

R1

XR2

X

R1

XR2

X

X

X

homomeric

Enantiodetermining nucleophilicattackofhalideion

Regiodivergent (enantioconvergent)reactionofaracemicmixture

28

Enantiodetermining haliranium ionformation

Forhaliranium ionformationtobeenantiodetermining,twoconditionsmustbemet:

1) thehalenium iontransfertotheolefinfromthe“X+”sourcemustbeirreversible

2) thehaliranium ionthusproducedmustbeconfigurationallystablepriortoitsnucleophilictrapping(itmustnotracemize).

R1 HH R2

XCat*

180 ˚

R1 HH R2

AuL*

180 ˚

R1 HH R2

OsO Cat*O

O O

Difficulttopredictstereochemical

informationvia σ∗orbital

Au(I) complexeshavelinearcoordination

geometry

Accesstoπ∗ orbitalallowstohavebetter

sterechemicalinteractionbetweenCat*andalkene

29

HH

HH

Br HHH H

free

HH

HH

Br HHH H

π-complex

HH

HH

Br

HHH H

transition state

HH

HH

Br

HHH H

π-complex

HH

HH

HHH H

free

Br

Alkene-to-alkene bromiranium iontransfer

30

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupIIIa (B,Al,Ga,In,Tl)Halides

C3H7C3H7

TiCl3•H2O (1 equiv)

CCl4, reflux C3H7C3H7

ClCl + C3H7

C3H7

ClCl

80 : 20

5% combined yield (w.r.t. TiCl3)(plus 33% of hydrochlorinated products)

anti-adduct syn-adduct

R1R2

X YH R2

R1 H

YX

π-complex

H R2R1 H

X

Xhaliranium

ion

HR2

R1 H

X

X

β-halocarbocation

or+X

-Y

X

H R2R1 H

YX

X

R1

XR2

X

-YR1

XR2

X

31

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupIVa (C,Si,Ge,Sn,Pb)Halides

OnlyPbCl4 haspowertodichlorinate alkenes.Cl

ClCl

+

quant(w.r.t. PbCl4)

no yield given

Pb(OAc)4 (1 equiv)dry HCl (excess)

DCM-40˚C to -25˚C

P.W.Henniger, E.Wapenaar, E.Havinga,Rec.Trav.Chim.1966,85, 1177–1187

R1R2

X YH R2

R1 H

YX

π-complex

H R2R1 H

X

X

haliraniumion

HR2

R1 H

X

X

β-halocarbocation

or+X

-Y

X

H R2R1 H

YX

X

R1

XR2

XR1

XR2

X

-Y

32

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupIVa (C,Si,Ge,Sn,Pb)Halides

Difluorination

AcO

Me H

Me COMe

H HAcO

Me H

Me COMe

H H

F F

Pb(OAc)4HF

DCM, -75˚C15 min

27%, (73% brsm)

R1R2

LnMX2

concertedgroup transfer

Type IVH R2R1 H

X XMLn

R1

XR2

X

-MLn

33

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupVa (N,P,As,Sb,Bi)Halides

Nitrogen

ClClNCl3 (1 equiv)

0-5 ˚C

92%(w.r.t. NCl3)

J.W.Strand, P.Kovacic,Synth.Commun.1972,2, 129–137

34

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupVa (N,P,As,Sb,Bi)Halides

Phosphorus

PhPh

PCl5 (2 equiv)

PhCl124 ˚C, 12h

PhPh

Cl

Cl

PhPh

Cl

Cl

+

85% 13%anti- syn-

PCl5 (1 equiv) Cl

Cl

Cl

Cl+

(2 equiv) "ionic" "radical"

With CHCl3 at 65 ˚C: 99 : 130 : 70With CCl4 at 65 ˚C:

35

MeMe

SbCl5 (1 equiv)

CCl473 ˚C, 10min

MeMe

Cl

Cl

MeMe

Cl

Cl

+

18 82:

96% combined (w.r.t. SbCl5)anti- syn-

MeMe

SbCl5 (1 equiv)

CCl476 ˚C, 10min

ClMe

Cl

Me

ClMe

Cl

Me

+

16 84:

98% combined (w.r.t. SbCl5)anti- syn-

(2.8 equiv)

(1.8 equiv)

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupVa (N,P,As,Sb,Bi)Halides

Antimony

36

SbClCl

Cl

Cl

Cl

2Cl

Cl

Cl

Cl

Cl

ClSb

Cl

Cl

Sb

Cl

Cl

Cl

Cl

Cl

ClSb

Cl

Cl

ClCl

Cl

Cl

Sb

EquilibriaofSbCl5inCCl4

GroupVa (N,P,As,Sb,Bi)Halides

Antimony

R2R1

H R2R1 H

Cl ClSb

H R2R1 H

Cl

Cl5Sb Cl

SbCl5

[SbCl4]+[SbCl6]-

R1

Cl

Cl

R2

R1

Cl

Cl

R2

Cl3Sb

37

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupVIa (O,S,Se,Te,Po)Halides

SulfurSO2Cl2

Initiator R

SO2Cl

RCl SO2

Cl

Cl R1R2

R1R2

Cl+

R1R2

ClSO2Cl2+

-SO2

R1R2

Cl

Cl

R1R2

Cl

O SO

Cl-Cl -SO2

SO2Cl2 (1 equiv) Cl

Cl

Cl

Cl+

(1 equiv) "ionic" "radical"

At 76 ˚C: 12 : 8875 : 25At 76 ˚C with 1,3-DNB (0.2 equiv):

CCl4, 2h

79 : 21At 25-35 ˚C with SiO2 (1.8 equiv):

38

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupVIa (O,S,Se,Te,Po)Halides

Sulfur SO2Cl2 (1 equiv) Cl

Cl

Cl

Cl+

(1 equiv) "ionic" "radical"

At 76 ˚C: 12 : 8875 : 25At 76 ˚C with 1,3-DNB (0.2 equiv):

CCl4, 2h

79 : 21At 25-35 ˚C with SiO2 (1.8 equiv):

R1R2

X YH R2

R1 H

YX

π-complex

H R2R1 H

X

Xhaliranium

ion

HR2

R1 H

X

X

β-halocarbocation

or+X

-Y

X

H R2R1 H

YX

X

R1

XR2

X

-YR1

XR2

X

39

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupVIIa (F,Cl,Br,I)Halides(exceptdihalogens)

Iodine

PhICl2

Cl PhI

Clheat or hν

Ph(Cl)I

Cl R1R2+ R1

R2

Cl

R1R2

ClPhICl2+

-PhIR1

R2

Cl

Cl

Cl+

40

PhMe

PhMe

PhICl2, hν

DCM, rt

ClHPh H

Me(fast)

ClHPh Me

H

ClICl

PhClICl

Ph

PhMe

Cl

ClPh

MeCl

ClFrom trans- 92 : 8From cis- 91 : 9

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupVIIa (F,Cl,Br,I)halides(exceptdihalogens)

Iodine

41

R1R2

R1R2

Cl

Cl IPh

R1R2

I

Cl

PhCl

Type I -PhIR1

R2

Cl

Cl

-PhI R1R2

Cl

I ClPh

-PhI

R1R2

Cl

Cl

-PhI

Type IIinv

Type IIref

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupVIIa (F,Cl,Br,I)halides(exceptdihalogens)

Iodine

Possiblereactionpathwaysfortheionicdichlorination ofalkeneswithPhICl2

42

HF

F

F

IMe δ+

δ−

R1R2

- HF R1R2

ITol

F

F

R1I

F

F 4-Tol

R2F

- 4-Tol- F-

R1

F

R2

F

MeO2C MeO2C

4-TolIF2 (1.3 equiv)

DCM/Et3•5HF (1/1 v/v)0˚C, 3h

55%

Alkenedihalogenation withmaingrouphalidesasreagentorcatalysts

GroupVIIa (F,Cl,Br,I)halides(exceptdihalogens)

Difluorination

43

MeMe

MoCl5 (1 equiv)

CCl474 ˚C, 20min

MeMe

Cl

Cl

MeMe

Cl

Cl

+

8 92:

85% combined (w.r.t. MoCl5)anti- syn-

MeMe

MoCl5 (1 equiv)

CCl474 ˚C, 20min

ClMe

Cl

Me

ClMe

Cl

Me

+

15 85:

92% combined (w.r.t. MoCl5)anti- syn-

(35 equiv)

(25 equiv)

Alkenedihalogenation withtransitionmetalhalidesasreagentorcatalysts

GroupVI(Cr,Mo,W,)metalhalides

Molybdenum

44

R2R1

H R2R1 H

Cl ClMo

H R2R1 H

Cl

Cl5Mo Cl

MoCl5

[MoCl4]+[MoCl6]-

R1

Cl

Cl

R2

R1

Cl

Cl

R2

Alkenedihalogenation withtransitionmetalhalidesasreagentorcatalysts

GroupVI(Cr,Mo,W,)metalhalides

Mechanismfortheformationofsyn- andanti-dichlorination products

45

Alkenedihalogenation withtransitionmetalhalidesasreagentorcatalysts

GroupVII(Mn,Tc,Re,)metalhalides

Manganese(VII)

C4H9C4H9

C4H9C4H9

C4H9

ClC4H9

Cl

C4H9

ClC4H9

Cl

KMnO4 (1 equiv)BnNEt3Cl (1 equiv)Me3SiCl (4 equiv)

DCM, 0˚C to 20˚C

KMnO4 (1 equiv)BnNEt3Cl (1 equiv)Me3SiCl (4 equiv)

DCM, 0˚C to 20˚C

94%

81%

R1R2

Cl [Mn]H

Cl

R1 HR2

[Mn]H

Cl

R1 HR2

[Mn]

Cl

-[Mn]

Cl

R2HCl

R1H

46

Alkenedihalogenation withtransitionmetalhalidesasreagentorcatalysts

GroupVII(Mn,Tc,Re,)metalhalides

Manganese(III)and(IV)

C3H7Me

C3H7

ClMe

Cl

KMnO4 (1 equiv)BnNEt3Cl (1 equiv)Me3SiCl (4 equiv)

DCM, 0˚C to 20˚C

95%, 64:36 dr

R1R2

Cl MnIII MnII

R1

ClR2

Cl MnIII MnII

R1

ClR2

Cl

MnO2 (1.5 equiv)Me3SiCl (6 equiv)

THF, 40˚C to 60˚C+Cl

Cl

ClCl

85% 8%

R1R2 Cl MnIV

R1

ClR2 R1

ClR2

Cl

Cl

Cl MnIII

-MnII

47

R1R2

[PdII] ClR1

R2

Cl

[PdII]

R1R2

Cl

[PdII]

or

syn anti

Known

R1 R2

[PdII] "Cl+" or "Cl-" + [O]

R1 R2

[PdII]

R1 R2

[PdII]or

Unknown

R1R2

[PdII] Cl

"Cl+" or "Cl-" + [O]R1

R2

Cl

ClR1

R2

Cl

Clor

syn anti

retentive invertive

Alkenedihalogenation withtransitionmetalhalidesasreagentorcatalysts

Group10(Ni,Pd,Pt,)metalhalides

Palladium

48

BuPdCl2(PhCN)2 Bu

[PdII]

p-benzoquinoneLiCl, AcOH,rt Bu

ClCl

(no yield or dr published)

Alkenedihalogenation withtransitionmetalhalidesasreagentorcatalysts

HO OH Pd(II)

[PdII]

X-, PBQ

[PdII]O

O

O

O

Pd0

Y-

XY

2H+

J.-E.Bäckvall, C.Jonasson,TetrahedronLett. 1997,38, 291–294

BuPd(OAc)2

p-benzoquinoneLiBr, AcOH,rt

BuBr

Br

(58%)

49

Thankyouforyourattention!

50

R1R2

X YH R2

R1 H

YX

π-complex

H R2R1 H

X

Xhaliranium

ion

HR2

R1 H

X

X

β-halocarbocation

or+X

-Y

X

H R2R1 H

YX

X

R1

XR2

X

-YR1

XR2

X

51

R1R2

LnMX2

anti-addition of M-X

H R2R1 H

M

π-complex

LnX

X

H R2R1 H

M

X

X Ln

-iranium ion

or M

XHR2

R1

HX

Ln

R1 HH R2X

X MLn

anchimericallyassisted

XH

R1H

R2MX

Ln

concerted

or R1

XR2

XType IIret

(retentive C-Xbond formation)

Type IIinv(invertive C-X

bond formation)

M

XHR2

R1

HX

Ln

X

R1

XR2

X

-MLn

SN2

-MLn

52

R1R2

LnMX2

syn-addition of M-X

H R2R1 H

4−membered transition state

MH

R1

XLn

H HR1 R2

X

X MLn

anchimericallyassisted

R1H

MX

Ln

concerted

or R1

XR2

XType IIIret

(retentive C-Xbond formation)

Type IIIinv(invertive C-X

bond formation)

M XH R2R1 H

XLn

X

R1

XR2

X

-MLn

SN2

M XXLn X

HR2

X

R2H

-MLn

53

R1R2

LnMX2

concertedgroup transfer

Type IVH R2R1 H

X XMLn

R1

XR2

X

-MLn

R1R2

"X "

X atom transferType V

R1R2

X

β-halo radical

R1R2

X

X Y

X Y -YR1

R2

X

X

chain reaction if Y•=X• or Y•→X• + Yʹ

RadicalTypeV