Boundary Layer Theory

Post on 01-Nov-2014

166 views 5 download

Tags:

description

Boundary Layer Theory

Transcript of Boundary Layer Theory

-

Prof. Dr. Norbert Ebeling

Boundary Layer TheoryLecture notes

Prof. Dr. N. Ebeling Boundary Layer Theory - 1 -

Contents :

1) General fluid mechanics / Newton fluids 1.1) Euler's law of hydrostatics 1.2) Friction 1.3) Dimensionless numbers 1.4) Laminar flow in a tube

2) Conservation equations 2.1) Mass balance for ρ = const. 2.2) Euler's and Bernoulli's equations 2.3) Navier-Stokes equations

3) Boundary layers 3.1) Boundary layers on a flat plate 3.2) Friction forces on a plate 3.3) Boundary layer on an obstacle

4) Potential and stream functions

5) Law of Kutta-Joukowski

6) Exact calculation of the Boundary layer thickness 6.1) Conservation of mass (continuity equation) 6.2) Navier-Stokes and Blasius equations 6.3) Friction

7) Thermal Boundary layer 8) Mass Transfer Boundary layer equation

9) Turbulent Boundary layer

10) Burbling 11) Bibliography 12) Acknowledgment

(dz) dy

dx

iDu

= dmDt

idF

∂ = 0

u

t

∂i

u = u

x

Du

Dt

if

= dx dy dzdm ρ i i i

x

y

z

i e x u

j e y v general definitions

k e z w

Prof. Dr. N. Ebeling Boundary Layer Theory - 2 -

1) General fluid mechanics / Newton Fluids

General definitions

Acceleration :

stationary :

frequently :

volume force: (e.g. g )

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂i i i

u u u u = + u + v + w

t x y z

Du

Dt

1dF↓

2dF↑

x

F f dx dy dz = dx

x

∂ρ

∂i i i i i

dp dy dzdF = i i

x

p f =

∂i

x 1 2 f dV + dF = dFρ i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 3 -

1.1) Euler's law of hydrostatics

x ↓xf

= + u

yτ η

∂i

u =

yτ µ

∂i

inertial force

friction force

+ dyy

ττ i

τ

����

���� ( ) = dy dx dzFR

Fy

dA

τ∂

∂i i i

�����

{

Prof. Dr. N. Ebeling Boundary Layer Theory - 4 -

1.2) Friction

Moving fluid : ( Couette - flow )

Newton fluid

Schlichting :

1.3) Dimensionless numbers :

Reynolds number

Re ~

u dx dy dz u

xRe ~

dx dy dzy

dm∂

ρ∂

∂τ

�����

i i i i i

i i i

υ

u u ~ ; =

y y

u

x d yη

τ∞ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ i

u ~

y dyη

τ ∞∂ ∂ ∂ ∂ i

v dRe =

νi with =

ην

ρ

Prof. Dr. N. Ebeling Boundary Layer Theory - 5 -

or any comparable speed v else

laminar flow : high friction forces,low inertial forces

avoided by friction

deciding

2

V v

v ddRe = = v

d

ρ ρηη

i ii i

i

AA

FC =

p si

21 u

2p ρ ∞→ i i

( or ) analogouswC ζ

( )R2

m

d dp = or

dx u

2

ζ λρ

i

i

�Froude -number

vFr

g d=

i

Rw

FC =

p si

Prof. Dr. N. Ebeling Boundary Layer Theory - 6 -

ascending force

s

Bernoulli :

Pipe :

Gravity influence :

ν

64 =

ReR

ζ

r dp du = = - 2 dx dr

− τ ηi i

22R dp ru(r) = - 1

4 dx R

η

i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 7 -

1.4) Laminar flow in a tube extremely high

nearly no initial forces, no influence of dm or ρ !

Hagen-Poisseulle :

Derivation :

Integration with u (r = R) = 0 leads to :

2

d dp 64 64 = =

dx v d v d v

2

η νρ ρ

i ii

i i ii

2 2dpp r - p + dx r - 2 r dx = 0

dx

π π τ π

i i i i i

v + = 0

y

u

x

∂ ∂

∂ ∂

R

0

V = u (r) 2 drπ∫ i i

4 R dpV = -

8 dx

π η

i ii

2

2

V R pu = =

R 8 l

π η

i

i i

( )u 2RRe =

ρ

η

i i

64 = laminar !!

Reξ

Prof. Dr. N. Ebeling Boundary Layer Theory - 8 -

2) Conservation equations

Important conservation equations for describing continuous flow ( cartesian coordinates ) :

2.1) Mass balance for ρ = const.

212

p d =

u l

∆ξ

ρi

i i

1 y zu ∆ ∆i i 2 = u y z∆ ∆i i 2 + v x z∆ ∆i i

( )1 2 2u - u y = + v x ∆ ∆i i

u p u = -

x xρ

∂ ∂

∂ ∂i i

x

Du udV = dV u = + dF

Dt x

∂ρ ρ

∂i i i i i

u v + = 0

x y

∆ ∆∆ ∆

Prof. Dr. N. Ebeling Boundary Layer Theory - 9 -

2.2) Euler's and Bernoulli's equations

Eulers equation ( one direction, pipe ):

Integration : W = F • l leads to Bernoulli's equation

x

u - p u = + f

x x

∂ ∂ρ ρ

∂ ∂i i i

22 2 2

1 1 1

u = p - g h

2ρ ρi i i

( ) = dy dx dzR

dFy

τ∂

∂i i i

u u p u + v = -

x y x

DuDt

∂ ∂ ∂ρ ∂ ∂ ∂

�������

i i i

v↑

Prof. Dr. N. Ebeling Boundary Layer Theory - 10 -

Mechanical energy balance : Bernoulli incl. hydrostatics

Euler (2 directions ):

v leads to a higher value of u

2.3) Navier - Stokes - equation

Bernoulli and Euler neglect friction

u

yητ ∂

=∂i

2 2

x 2 2

u u p u + v = f - + +

x y x

u u

y xρ ρ η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

i i i i

2 2

y 2 2

p v + u = f - + +

v v v v

y x y y xρ ρ η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

i i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 11 -

Navier - Stokes - Equations ( Can be simplified in a boundary layer (later))

3) Introduction to Boundary layers 3.1) Boundary layers on a flat plate

No influence of the viscosity but directly on the wall

Boundary layer phenomena :

( Schlichting )

2 2

2 2

u = +

yR

uf

∂ ∂ ∂ ∂ i

x Rx

Du p = f - + f

Dt xρ ρ

∂i i

2

2

u u ~

x∞ ∞ρ η

δi i

x ~

u

νδ

i

2

u u ~ ; ~

u

x x yη

δτ∞ ∞∂ ∂

∂ ∂i

2 2

2

u u = =

u

x y yρ η

τ∂ ∂ ∂

∂ ∂ ∂i i i

99 (x)

x = 5

u

νδ

ii

Prof. Dr. N. Ebeling Boundary Layer Theory - 12 -

Thickness of a boundary layer, laminar on a plate

inertial force = friction force ( Navier -Stokes )

( ) = f xδ

u→∞

( )i

y = 0

(x) = U - u(x,y) dy U δ∞

∫i i

valuelow

99 is arbitraryδ

99 (x) 5 x =

lRel

δi

Prof. Dr. N. Ebeling Boundary Layer Theory - 13 -

Dimensionless :

A non - arbitrary value : displacement thickness

3.2) Friction forces on a plate :

high value

99

1 3

iδ δ≈ i

u( ) =

yw

w

x ητ ∂

∂ i

W Ww

2

S(Surface)

F F = c = =

E u b l

2∞

ζρi i

( )l

W W

0

F = b x dxτ∫i i

l 1

3 2W

0

F ~ b u x dx−

∞µ ρ ∫i i i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 14 -

xu

~ with ~ u

w

ηρ

η δδ

τ ∞

i

i

3 u ~ w

x

η ρτ ∞i i

1

3 2W

F ~ b u 2 l∞µ ρi i i i i

3

24 2

b 2 u l ~

b u l4

wc

η ρ

ρ∞

i i i i i

i i i

l ~

Rew

c

1,1328 =

Rew

c

Prof. Dr. N. Ebeling Boundary Layer Theory - 15 -

3.3) Boundary layer on an obstacle :

Navier - Stokes :

Far away from the obstacle (stream line) :

( )dU l dpU = - no friction

dx dxρi i

dU dp and are related to Bernoulli

dx dx

= w dsΓ ∫ i�

Prof. Dr. N. Ebeling Boundary Layer Theory - 16 -

4) Potential and Stream functions

For describing vortex streams ( and comparable ) :

Circulation :

Potential streams (no friction ) : no rotation

Mass balance ; conservation equation :

11

2

2

v = =

t x

= = -t

1 v u = -

2 x y

u

y

γω

γω

ω

∂ ∂∂ ∂∂ ∂

∂ ∂

∂ ∂ ∂ ∂

v u = 0 ; - = 0

x yω

∂ ∂

∂ ∂

v + = 0

y

u

x

∂ ∂

∂ ∂

u = ; v = - y x

∂Ψ ∂Ψ

∂ ∂

+ - = 0y xx y

∂ ∂Ψ ∂ ∂Ψ ∂ ∂ ∂ ∂

2 2

2 2 + = 0

x y

∂ Ψ ∂ Ψ

∂ ∂

= ; v = y

ux

φ φ∂ ∂

∂ ∂

Prof. Dr. N. Ebeling Boundary Layer Theory - 17 -

Stream function (definition ) :

Conservation equation :

No rotation :

Potential function :

Potential streams

1 v u v u = - ; - = 0

2 x y x y

∂ ∂ ∂ ∂ω ∂ ∂ ∂ ∂

i

2 2

2 2

u u + = 0

x y

∂ ∂

∂ ∂

( )p = f u, v

2

2

v u u v - - + = 0

y x y x x x y

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

u u p u + v = - + 0

x y x

∂ ∂ ∂ρ ∂ ∂ ∂ i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 18 -

Streams without any rotation :

also conservation equation :

Insert in Navier - Stokes :

leads to Bernoulli for v = 0 - no friction ! - no rotation - no friction

v u - = 0

x y

∂ ∂

∂ ∂

u v + = 0

x y

∂ ∂

∂ ∂

2 2v u - = 0 - = 0

x y x y x y

∂ ∂ ∂ Φ ∂ Φ↔

∂ ∂ ∂ ∂ ∂ ∂

2 2

2 2 + = 0

x y

∂ Φ ∂ Φ

∂ ∂

Prof. Dr. N. Ebeling Boundary Layer Theory - 19 -

Model frequently used : On the obstacle : boundary layer in the vicinity , but outside the layer : no friction

potential function :

No rotation :

Conservation equations :

Stream function :

Conservation equations o.k.

u = ; v = x y

∂Φ ∂Φ

∂ ∂

u = ; v = - y x

∂Ψ ∂Ψ

∂ ∂

= w dsΓ ∫��

i�

Prof. Dr. N. Ebeling Boundary Layer Theory - 20 -

from definition :

Stream line : ( no v : ) -> ψ = constant

Circulation :

Example :

here : Γ = 0 ( all possible ways )

airfoil : high speed

low speed

u + v = 0x y

∂Ψ ∂Ψ∂ ∂

i i

0Γ ≠

( ) = 2 r rΓ π ωi i iPotential- and flowfunctions as well as velocitys for some elementary potential flows

flow streamline

translational flow

source flow

( productiveness E )

potential vortex stream

( circulation I' )

source-drain flow

( productiveness E, distance h )

dipole flow

( dipole moment M )

( )x,yΦ ( )x,yΨ ( )u x,y ( )v x,y

U x + V y∞ ∞

E ln r

2

Γ ϕπ

1

2

E r ln

2 rπ

2

M x

2 rπ

U y - V x∞ ∞

E

π

ln r2

Γ−π

( )1 2

E -

2ϕ ϕ

π

2

M y

2 r−

π

U∞

2

E x

2 rπ

2

y

2 r

Γ−π

2 2

1 2

E x + h x -

2 r r

π

2 2

4

M y - x

2 rπ

V∞

2

E y

2 rπ

2

x

2 r

Γπ

2 2

1 2

Ey 1 1 -

2 r r

π

4

M 2xy 2 r

−π

l

rw ~ = 0Γ

Prof. Dr. N. Ebeling Boundary Layer Theory - 21 -

assumption : ; obviously :

One exception : including the centre :

(see also: Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 130 )

radyield : E = w 2 rπi i

for x = r : E = u 2 xπi i

Eu =

2 x ( or r )π

2 2E = ln x + y

πi

2 2 2 2

E 1 1 1u = = 2x

x 2 2x + y x + y

∂Φ∂ π

i i i i

2

E xu =

2 rπi

E E y = = arctg

2 2 x

Ψ ϕ π π

i i

E yu = = arctg

y 2 y x

∂Ψ ∂ ∂ π ∂

i

radspring : V = w 2 r hπ i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 22 -

Spring :

2

1 arctg x =

x 1 + x

( )( )

y

x

y

x

u = x

∂ ∂Ψ

∂ ∂i

Prof. Dr. N. Ebeling Boundary Layer Theory - 23 -

Bronstein :

the rest is the same

For application :

airfoil :

( )2

2 2y

x

E 1 1 xu =

2 x x1 + πi i i

2

E xu =

2 rπi

stream = of model streams∑

AF =b l p∆i i

( )

2

A

1F =b l 2u

2∞ρi i i i

2

AF = 2 l b u∞ρi i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 24 -

5) Law of Kutta - Joukowski

simple example : flat plate :

Kutta - Joukowski

= 2 u l∞Γ i i

AF = b u∞Γ ρi i i

: u = Uy ∞→ ∞

2

2

u u + v =

x y

uu

∂ ∂ ∂

∂ ∂ ∂i i i

= 0 : u = 0, v = 0y

u

y

x ν

i

Prof. Dr. N. Ebeling Boundary Layer Theory - 25 -

6) Exact calculation of the Boundary layer thickness

Boundary layer on a plate :

For similarity y/δ (x) is important

v + = 0

y

u

x

∂ ∂

∂ ∂

( ) x v x ~

i

m = =

y m yu

∂Ψ ∂Ψ ∂

∂ ∂ ∂i

( ) = u f mu ∞ ′i

( )1 1 = 2 u f m

2 xxν ∞

∂Ψ

∂i i i i i

= y 2 x

um

ν∞ii i

( ) = 2 x f m 2 x

uu uν

ν∞

∞ ′i i i i ii i

Prof. Dr. N. Ebeling Boundary Layer Theory - 26 -

Definition :

( the factor 2 is arbitrary but helpful )

Idea :

Stream function :

= - x

v∂Ψ

( ) = 2 x u f mν ∞Ψ i i i i

( )�

Schlichtingsays

dimensionlessstream function

= 2 x u f m∞

η

Ψ ν���

i i i i

( ) m 2 x u f m

xν ∞

∂ ′+ ∂ i i i i i

3-2

u 1 = y - x

2 2

m

x ν∞∂

∂ i i i

i

3-

122

u u = f - y x x

x 2 x 2 x∞ ∞

ν∂Ψ ∂ ν

ii i i i i

i i i

( ) uv = - = m f - f

x 2 x∞ν∂Ψ ′

∂i

i ii

( )3

-2

1 = u f m y - x

2 2

uu

x ν∞

∞∂ ′′ ∂

i i i i ii

u v = m f - f

2 x y 2 x

u

y y

ν ν∞ ∞ ∂ ∂ ∂′

∂ ∂ ∂

i ii i i

i i

( ) 1 = f m -

2 x

uu m

x∞

∂ ′′ ∂ i i i

i

( ) 2 x u f m∞′νi i i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 27 -

6.1) Conservation of mass (continuity equation)

u u u u uv = f + y f

2 x 2 x 2 x 2 x 2 x

m

y

ν νν ν ν

∞ ∞ ∞ ∞ ∞∂ ′ ′′∂

�����

i ii i i i i

i i i i i i i i

u v + = 0

x y

∂ ∂⇒

∂ ∂

( ) = m f - f

2 x

uv

ν ∞ ′ii i

i

( ) = f mu u∞ ′i

( ) 1 = f m m -

2 x

uu

x∞

∂ ′′ ∂ i i i

i

( ) uu = u f m

y 2 x∞

∂ ′′∂ ν

i ii i

Prof. Dr. N. Ebeling Boundary Layer Theory - 28 -

Conti - equation

6.2) Navier-Stokes and Blasius equations

Navier-Stokes for the boundary layer on a flat plate :

f

2 x 2 x

u uνν

∞ ∞′−i

i ii i i

( ) 1 = m f m

2 x

vu

y∞

∂ ′′∂

i i ii

( )2

2 = f m

2 x 2 x

u uuu

y ν ν∞ ∞

∞∂ ′′′∂

i i ii i i i

2

2

u u uu + v =

x y y

∂ ∂ ∂ν

∂ ∂ ∂i i i

f + f f = 0

Blasius - Equation

′′′ ′′i

m = 0 f = 0 , f = 0

m : f = 1

′→ ∞

( )m = 0 i.e. y = 0 u = 0 and f = 0′

( )m i.e. y u = u and f = 1∞ ′→ ∞ → ∞

( ) uv = m f - f

2 x∞ν ′ii i

i

for y = 0 v and f have to be 0⇒

Prof. Dr. N. Ebeling Boundary Layer Theory - 29 -

with :

Inserting and differentation leads directly to :

side conditions :

( )u = u f m∞ ′i

characteristic parameters for the boundary layer on a

longitudinal flown plate

0,4696

1,2168

0,4696

0,7385

( )1 = lim - fη β → ∞ η η

wf ′′

( )2

0

= f 1 - f d∞

′ ′β η∫

Prof. Dr. N. Ebeling Boundary Layer Theory - 30 -

There is a function f(m), but there is no equation. description of f(m) : Thickness of the boundary layer :

(see also : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 158 )

(nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 159 )

2

99 = y for u = 0.99 u∞δ i

99 = y for f = 0.99′δ

Prof. Dr. N. Ebeling Boundary Layer Theory - 31 -

(see also : Incropera, F.P.; DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, Wiley, 4th Ed., page 352 )

Attention : f and η deviate from Schlichting in factor !

Flat plate laminar boundary layer functions

0,0 0,0000 0,000 0,470

0,4 0,0191 0,133 0,468

0,8 0,0750 0,265 0,462

1,2 0,1683 0,394 0,448

1,6 0,2970 0,517 0,420

2,0 0,4596 0,630 0,378

2,4 0,6520 0,729 0,322

2,8 0,8704 0,812 0,260

3,2 1,1095 0,876 0,197

3,6 1,3647 0,923 0,139

4,0 1,6306 0,956 0,091

4,4 1,9035 0,976 0,055

4,8 2,1814 0,988 0,031

5,2 2,4621 0,994 0,016

5,6 2,7436 0,997 0,007

6,0 3,0264 0,999 0,003

6,4 3,3086 1,000 0,001

6,8 3,5914 1,000 0,000

f um = y

x∞

ν

df u =

dm u∞

2

2

d f

dm

uu = u f y

2 x∞

′ ν

ii i

w

w

uu = u f

y 2 x∞

∞ ∂ ′′ ∂ ν

i ii i

w

uu 0,4696 = u

y x2

∞∞

∂ ∂ ν

i ii

l

w w

0

F = b dxτ∫ i i

l 1

2w

0

uF = 0,332 u b x dx

−∞

∞ην ∫i i i i i i

l 1

2

0

with x dx = 2 l−

∫ i

Prof. Dr. N. Ebeling Boundary Layer Theory - 32 -

6.3) Friction :

Plate ( 1 side ) :

w

u = 0,332 u

x∞

∞τ ην

i i ii

ww

Fc

u b l 2

=ρi i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 33 -

( see also 3.2 )

7) Thermal boundary layer

Conservation equation for heat :

convection :

22

p 2

T u c u + v = +

x y

T T

y yρ λ η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

i i i i i i

w

1.328c

Re=

( ) T dx dz dy

y

∂− λ ∂ i i i

( )c pQ = m c T∆ ∆ i i

( )p

Tc dy dz u dx

x

∂ ρ ∂ i i i i i i

udP = dx dz dy

y ∂

∂τ i i i i

u =

yητ ∂

∂i

Prof. Dr. N. Ebeling Boundary Layer Theory - 34 -

convection :

> 0

conduction :

< 0

friction :

> 0

Compare the conservation equations for heat with Navier-Stokes !

T A

∂− ∂ i i

2

p 2

T T T c u + v =

x y y

∂ ∂ ∂ρ λ ∂ ∂ ∂ i i i i

2

2

u u u + v =

x y y

∂ ∂ ∂η ν ∂ ∂ ∂ i i i

2

2p

2

2

u u uu + v

cx y y =

TT Tu v

yx y

∂ ∂ ∂ ν ρ∂ ∂ ∂

∂λ ∂ ∂ ∂∂ ∂

i ii i

i

i i i

2

2

2

2

u u uu + v

x y y =

TT Tu v

yx y

Pr ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂∂ ∂

i i

i

i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 35 -

( heat from friction neglected )

Navier-Stokes adapted to a boundary layer (see also 6) )

( )wq = T - T∞α i

w

Tq = -

y

∂λ ∂

i

u

w

T-

y =

T - T∞

∂λ ∂ α

i

( )T T

w

w

- y

= T

- 1T

∂ λ

∂ α

i

Prof. Dr. N. Ebeling Boundary Layer Theory - 36 -

For gases Pr ≈ 1. Independent from the condition u and T behave equal.

w

u

u =

y

∂ α λ

i

u = 0,4696

2 x∞α λ

νi i

i il

1

0 2

1b dx

u x = 0,4696 2 b l

∞α λν

∫i i

i i ii i

2

u 4 l = 0,4696

2 l

∞α ληρ

i ii i

i i

1+

2 = 0,664 Rel

λα i i

Nu = 0,664 Rei

wwith u = 0

Prof. Dr. N. Ebeling Boundary Layer Theory - 37 -

5Re = 5 10i

, sudden δ τ↑ ↑

Prof. Dr. N. Ebeling Boundary Layer Theory - 38 -

There is evidence that for Pr ≠ 1 :

see also : Vauck, W.R.A., Müller, H.A.: "Grundoperationen chemischer Verfahrenstechnik" , Wiley, 11th Edition (2001)

8) Mass transfer boundary layer equation

9) Turbulent Boundary layer

Plate : turbulent from on

virtual friction

turbulent layer : 2 layers

viscous sublayer

11

32Nu = 0,664 Re Pri i

2

A A AAB 2

c c cu + v = D

x y y

∂ ∂ ∂

∂ ∂ ∂i i i

fx

50 =

cRe

2

v

x

δ

i

( ) ( ) ( )( )

u x,y,t = u x,y + u x,y,t

v x,y,t = v....

u = average ; u = 0′

p (x,y,t) = p (x,y) + p (x,y,t)′

u u u u u + u + u + u + v.....

x x x x

′ ′∂ ∂ ∂ ∂ ′ ′ρ ∂ ∂ ∂ ∂ i i i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 39 -

Viscous sublayer :

Turbulent boundary layers

Conservation equations :

Navier - Stokes ( for boundary layers ) :

u u v v u v + + + = 0 ; + = 0

x x y y x y

′ ′∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

u u u uu + u + v + v

x x y y

.....

′ ′∂ ∂ ∂ ∂′ ′ρ

∂ ∂ ∂ ∂

=

i i i i

( )2

2

u u du uu + v = u + - u v

x y dx y y

∂ ∂ ∂ ∂′ ′ρ ρ η ρ ∂ ∂ ∂ ∂

i i i i i i

�����

u uu = 0 , u = 0

x x

′∂ ∂′ ′

∂ ∂i i

2 2

2 2

d u u - + +

dx y y

′ ρ ∂ ∂= η ∂ ∂

Prof. Dr. N. Ebeling Boundary Layer Theory - 40 -

Average :

2 2

2 2

dp u u - + +

dx y y

′ ∂ ∂= η ∂ ∂

i

( )dp dU - U Bernoulli

dx dx= ρ i i

( )u uu + v u v

x y y

′ ′∂ ∂ ∂′ ′ ′ ′≈

∂ ∂ ∂i i i

l

u =

y

∂τ η

∂i

( )t = - u v

is usually negative

u v

′ ′τ ρ

′ ′

i i

i

t

- u v = + with =

u

y

u

y′ ′∂∂

∂τ ρ∂

ε ε ii i

~ l u

y

u ∂∂′ i

2

tu u

= l y y

∂ ∂ρ

∂ ∂τ i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 41 -

laminar sheer stress :

turbulent sheer stress :

ε : turbulent kinematic viscosity

l = length of mixing way l = f ( distance to the wall )

laminar sublayer

v ~ u′ ′

dpFlat plate : = 0

dx

du dpU = -

dx dxi

Prof. Dr. N. Ebeling Boundary Layer Theory - 42 -

Degree of turbulence :

10) Burbling

Stream line along a body different from a flat plate outside the boundary layer ( no friction : )

( see Bernoulli and Navier-Stokes )

( )2 2 213

u

u + v + w T =

u∞

′ ′ ′i

2

2

u u dp u u + v = - +

x y dx y

∂ ∂ ∂ρ η ∂ ∂ ∂ i i i i

Prof. Dr. N. Ebeling Boundary Layer Theory - 43 -

low speed - high pressure

When friction and pressure increase, debonding occurs.

In the layer :

2

2

dp uIf has a high value, must

dx y

become positive

Prof. Dr. N. Ebeling Boundary Layer Theory - 44 -

Result :

(nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 37 )

(nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 39 )

burbling from

point A on

Prof. Dr. N. Ebeling Boundary Layer Theory - 45 -

Turbulent flow : η + ε · ρ instead of η : burbling occurs later

(nach : Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 110 )

(nach : Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 111 )

w c = 0→

u D u DRe = =∞ ∞ρ

η ν

i i i

laminar→

laminar, but burbling→

} turbulent

ww 2

2

sphere :

Fc =

u D

2 4∞ π

ρi i i

w c = 0→

Prof. Dr. N. Ebeling Boundary Layer Theory - 46 -

creeping flow :

d'Alembert : no friction (and no burbling)

(nach : Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 114 )

(nach : Gersten, K. : Einführung in die Strömungsmechanik,Bertelsm. Univ.Verlag, 1st edition, page 112 )

f d =

uSr

i

Prof. Dr. N. Ebeling Boundary Layer Theory - 47 -

Periodic stream due to debonding :

Strouhal - Number :

Prof. Dr. N. Ebeling Boundary Layer Theory - 48 -

11) Bibliography

- Gersten, K. : Einführung in die Strömungsmechanik, Shaker; 1st edition (2003), ISBN-13: 978-3832210397

- Schlichting, H., Gersten, K. : Grenzschicht - Theorie, Springer Verlag, 10th edition (2006), ISBN-13: 978-3540230045

- Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, Wiley, 5th edition (2001) , ISBN-10: 9755030654

- Vauck, W.R.A., Müller, H.A.: "Grundoperationen chemischer Verfahrens- technik" , Wiley, 11th Edition (2000), ISBN -10: 3527309640

- Bronstein, I.N., Semendjajew, K.A., Musiol, G., Muehlig, H. : Taschenbuch der Mathematik, Deutsch, 7th edition (2008) , ISBN-13: 978-3817120079

12) Acknowledgment

I would like to thank my student assistant Matthias Kemper for his contribution to this work.