Download - RF Systems I - cas.web.cern.ch delay of ๐œ becomes ... So I and Q are the Cartesian coordinates in the ... the tuning range might be > octave!

Transcript

RF Systems I Erk Jensen, CERN BE-RF

Introduction to Accelerator Physics, Prague, Czech Republic, 31 Aug โ€“ 12 Sept 2014

Definitions & basic concepts dB

t-domain vs. ฯ‰-domain

phasors

8th Sept, 2014 CAS Prague - EJ: RF Systems I 2

Decibel (dB)

โ€ข Convenient logarithmic measure of a power ratio.

โ€ข A โ€œBelโ€ (= 10 dB) is defined as a power ratio of 101. Consequently, 1 dB is a power ratio of 100.1 โ‰ˆ 1.259.

โ€ข If ๐‘Ÿ๐‘‘๐‘ denotes the measure in dB, we have:

๐‘Ÿ๐‘‘๐ต = 10 dB log๐‘ƒ2

๐‘ƒ1= 10 dB log

๐ด22

๐ด12 = 20 dB log

๐ด2

๐ด1

โ€ข๐‘ƒ2

๐‘ƒ1=

๐ด22

๐ด12 = 10๐‘Ÿ๐‘‘๐‘ 10 dB

๐ด2

๐ด1= 10๐‘Ÿ๐‘‘๐‘ 20 dB

โ€ข Related: dBm (relative to 1 mW), dBc (relative to carrier) 8th Sept, 2014 CAS Prague - EJ: RF Systems I 3

๐‘Ÿ๐‘‘๐ต โˆ’30 dB โˆ’20 dB โˆ’10 dB โˆ’6 dB โˆ’3 dB 0 dB 3 dB 6 dB 10 dB 20 dB 30 dB

๐‘ƒ2

๐‘ƒ1 0.001 0.01 0.1 0.25 .50 1 2 3.98 10 100 1000

๐ด2

๐ด1 0.0316 0.1 0.316 0.50 .71 1 1.41 2 3.16 10 31.6

Time domain โ€“ frequency domain (1)

โ€ข An arbitrary signal g(t) can be expressed in ๐œ”-domain using the Fourier transform (FT).

๐‘” ๐‘ก โ‹— ๐บ ๐œ” =1

2๐œ‹ ๐‘” ๐‘ก โ…‡โ…‰๐œ”๐‘ก

โˆž

โˆ’โˆž

๐‘‘๐‘ก

โ€ข The inverse transform (IFT) is also referred to as Fourier Integral.

๐บ ๐œ” โ‹– ๐‘” ๐‘ก =1

2๐œ‹ ๐บ ๐œ” โ…‡โˆ’โ…‰๐œ”๐‘ก

โˆž

โˆ’โˆž

๐‘‘๐œ”

โ€ข The advantage of the ๐œ”-domain description is that linear time-invariant (LTI) systems are much easier described.

โ€ข The mathematics of the FT requires the extension of the definition of a function to allow for infinite values and non-converging integrals.

โ€ข The FT of the signal can be understood at looking at โ€œwhat frequency components itโ€™s composed ofโ€.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 4

Time domain โ€“ frequency domain (2)

โ€ข For ๐‘‡-periodic signals, the FT becomes the Fourier-Series, ๐‘‘๐œ” becomes 2๐œ‹ ๐‘‡ , โˆซ becomes โˆ‘.

โ€ข The cousin of the FT is the Laplace transform, which uses a complex variable (often ๐‘ ) instead of โ…‰๐œ”; it has generally a better convergence behaviour.

โ€ข Numerical implementations of the FT require discretisation in ๐‘ก (sampling) and in ๐œ”. There exist very effective algorithms (FFT).

โ€ข In digital signal processing, one often uses the related z-Transform, which uses the variable ๐‘ง = โ…‡โ…‰๐œ”๐œ, where ๐œ is the sampling period. A delay of ๐‘˜๐œ becomes ๐‘งโˆ’๐‘˜.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 5

Time domain โ€“ frequency domain (3) โ€ข Time domain โ€ข Frequency domain

8th Sept, 2014 CAS Prague - EJ: RF Systems I 6

๐‘“ โˆ’๐‘“

๐œ

2 1 ๐œ

๐œŽ 1

๐œŽ

๐‘‡ 1

๐‘‡

1

๐‘“

๐‘›

๐‘‡ยฑ ๐‘“

1

๐‘“

๐‘‡

1

๐œŽ

๐‘“ โˆ’๐‘“

๐œŽ

1

๐‘“

sampled oscillation sampled oscillation

modulated oscillation modulated oscillation

1

๐‘“

๐œ โˆ’๐‘“

1 ๐œ

๐‘“

Fixed frequency oscillation (steady state, CW) Definition of phasors

โ€ข General: ๐ด cos ๐œ”๐‘ก โˆ’ ๐œ‘ = ๐ด cos ๐œ”๐‘ก cos ๐œ‘ + ๐ด sin ๐œ”๐‘ก sin ๐œ‘

โ€ข This can be interpreted as the projection on the real axis of a rotation in the complex plane.

โ„œ ๐ด cos ๐œ‘ + โ…‰ sin ๐œ‘ โ…‡โ…‰๐œ”๐‘ก

โ€ข The complex amplitude ๐ด is called โ€œphasorโ€;

๐ด = ๐ด cos ๐œ‘ + โ…‰ sin ๐œ‘

8th Sept, 2014 CAS Prague - EJ: RF Systems I 7

real part

imag

inar

y p

art ฯ‰

Calculus with phasors

โ€ขWhy this seeming โ€œcomplicationโ€?: Because things become easier!

โ€ข Using ๐‘‘

๐‘‘๐‘กโ‰ก โ…‰๐œ”, one may now forget about the rotation with

๐œ” and the projection on the real axis, and do the complete analysis making use of complex algebra!

๐ผ = ๐‘‰1

๐‘…+ โ…‰๐œ”๐ถ โˆ’

โ…‰

๐œ”๐ฟ

8th Sept, 2014 CAS Prague - EJ: RF Systems I 8

Example:

Slowly varying amplitudes

โ€ข For band-limited signals, one may conveniently use โ€œslowly varyingโ€ phasors and a fixed frequency RF oscillation.

โ€ข So-called in-phase (I) and quadrature (Q) โ€œbaseband envelopesโ€ of a modulated RF carrier are the real and imaginary part of a slowly varying phasor.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 9

On Modulation AM

PM

I-Q

8th Sept, 2014 CAS Prague - EJ: RF Systems I 10

Amplitude modulation

1 + ๐‘š cos ๐œ‘ โˆ™ cos ๐œ”๐‘๐‘ก = โ„œ 1 +๐‘š

2โ…‡โ…‰๐œ‘ +

๐‘š

2โ…‡โˆ’โ…‰๐œ‘ โ…‡โ…‰๐œ”๐‘๐‘ก

8th Sept, 2014 CAS Prague - EJ: RF Systems I 11

50 100 150 200 250 300

1.5

1.0

0.5

0.5

1.0

1.5

green: carrier black: sidebands at ยฑ๐‘“๐‘š blue: sum

example: ๐œ‘ = ๐œ”๐‘š๐‘ก = 0.05 ๐œ”๐‘๐‘ก๐‘š = 0.5

๐‘š: modulation index or modulation depth

Phase modulation

โ„œ โ…‡โ…‰ ๐œ”๐‘๐‘ก+๐‘€ sin ๐œ‘ = โ„œ ๐ฝ๐‘› ๐‘€ โ…‡โ…‰ ๐‘›๐œ‘+๐œ”๐‘๐‘ก

โˆž

๐‘›=โˆ’โˆž

8th Sept, 2014 CAS Prague - EJ: RF Systems I 12

50 100 150 200 250 300

1.0

0.5

0.5

1.0

Green: ๐‘› = 0 (carrier) black: ๐‘› = 1 sidebands red: ๐‘› = 2 sidebands blue: sum

where

๐‘€: modulation index (= max. phase deviation)

example: ๐œ‘ = ๐œ”๐‘š๐‘ก = 0.05 ๐œ”๐‘๐‘ก๐‘€ = 4

๐‘€ = 1

Spectrum of phase modulation

8th Sept, 2014 CAS Prague - EJ: RF Systems I

13

4 2 0 2 41.0

0.5

0.0

0.5

1.0

4 2 0 2 41.0

0.5

0.0

0.5

1.0

4 2 0 2 41.0

0.5

0.0

0.5

1.0

4 2 0 2 41.0

0.5

0.0

0.5

1.0

4 2 0 2 41.0

0.5

0.0

0.5

1.0Phase modulation with ๐‘€ = ๐œ‹: red: real phase modulation blue: sum of sidebands ๐‘› โ‰ค 3

M=1

M=4

M=3

M=2

Plotted: spectral lines for sinusoidal PM at ๐‘“๐‘š Abscissa: ๐‘“ โˆ’ ๐‘“๐‘ ๐‘“๐‘š

M=0 (no modulation)

Spectrum of a beam with synchrotron oscillation, ๐‘€ = 1 = 57 ยฐ

8th Sept, 2014 CAS Prague - EJ: RF Systems I

14

carrier synchrotron sidelines

f

Vector (I-Q) modulation

8th Sept, 2014 CAS Prague - EJ: RF Systems I

15

More generally, a modulation can have both amplitude and phase modulating components. They can be described as the in-phase (I) and quadrature (Q) components in a chosen reference, cos ๐œ”๐‘Ÿ๐‘ก . In complex notation, the modulated RF is:

โ„œ ๐ผ ๐‘ก + โ…‰ ๐‘„ ๐‘ก โ…‡โ…‰ ๐œ”๐‘Ÿ๐‘ก =

โ„œ ๐ผ ๐‘ก + โ…‰ ๐‘„ ๐‘ก cos ๐œ”๐‘Ÿ๐‘ก + โ…‰ sin ๐œ”๐‘Ÿ๐‘ก =

๐ผ ๐‘ก cos ๐œ”๐‘Ÿ๐‘ก โˆ’ ๐‘„ ๐‘ก sin ๐œ”๐‘Ÿ๐‘ก

So I and Q are the Cartesian coordinates in the complex โ€œPhasorโ€ plane, where amplitude and phase are the corresponding polar coordinates.

๐ผ ๐‘ก = ๐ด ๐‘ก cos ๐œ‘ ๐‘„ ๐‘ก = ๐ด ๐‘ก sin ๐œ‘

I-Q modulation: green: I component red: Q component blue: vector-sum

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

Vector modulator/demodulator

8th Sept, 2014 CAS Prague - EJ: RF Systems I 16

mixer

0ยฐ

90ยฐ combiner splitter

3-dB hybrid

low-pass

low-pass

tI

tI

tQ tQ

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

1 2 3 4 5 6

2

1

1

2

3-dB hybrid 0ยฐ

90ยฐ

๐œ”๐‘Ÿ ๐œ”๐‘Ÿ โˆ‘

mixer

mixer

mixer

Digital Signal Processing Just some basics

8th Sept, 2014 CAS Prague - EJ: RF Systems I 17

Sampling and quantization โ€ข Digital Signal Processing is very powerful โ€“ note recent progress in digital

audio, video and communication!

โ€ข Concepts and modules developed for a huge market; highly sophisticated modules available โ€œoff the shelfโ€.

โ€ข The โ€œslowly varyingโ€ phasors are ideal to be sampled and quantized as needed for digital signal processing.

โ€ข Sampling (at 1 ๐œ๐‘  ) and quantization (๐‘› bit data words โ€“ here 4 bit):

8th Sept, 2014 CAS Prague - EJ: RF Systems I 18

1 2 3 4 5 6

1.5

1.0

0.5

0.5

1.0

1.5

The โ€œbasebandโ€ is limited to half the sampling rate!

ADC

DAC Original signal Sampled/digitized

Anti-aliasing filter Spectrum

The โ€œbasebandโ€ is limited to half the sampling rate!

Digital filters (1) โ€ข Once in the digital realm, signal processing becomes โ€œcomputingโ€!

โ€ข In a โ€œfinite impulse responseโ€ (FIR) filter, you directly program the coefficients of the impulse response.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 19

sf1

Transfer function: ๐‘Ž0 + ๐‘Ž1๐‘ง

โˆ’1 + ๐‘Ž2๐‘งโˆ’2 + ๐‘Ž3๐‘งโˆ’3 + ๐‘Ž4๐‘งโˆ’4

๐‘ง = โ…‡โ…‰๐œ”๐œ๐‘ 

Digital filters (2)

โ€ข An โ€œinfinite impulse responseโ€ (IIR) filter has built-in recursion, e.g. like

8th Sept, 2014 CAS Prague - EJ: RF Systems I 20

Transfer function: ๐‘0 + ๐‘1๐‘งโˆ’1 + ๐‘2๐‘งโˆ’2

1 + ๐‘Ž1๐‘งโˆ’1 + ๐‘Ž2๐‘งโˆ’2

Example: ๐‘0

1 + ๐‘๐‘˜๐‘งโˆ’๐‘˜

0 1 2 3 4 5

2

4

6

8

10

โ€ฆ is a comb filter.

2๐œ‹๐‘˜

๐œ๐‘ 

Digital LLRF building blocks โ€“ examples

โ€ขGeneral D-LLRF board: โ€ข modular!

FPGA: Field-programmable gate array

DSP: Digital Signal Processor

โ€ขDDC (Digital Down Converter) โ€ข Digital version of the

I-Q demodulator CIC: cascaded integrator-comb

(a special low-pass filter)

8th Sept, 2014 CAS Prague - EJ: RF Systems I

21

RF system & control loops

e.g.: โ€ฆ for a synchrotron:

Cavity control loops

Beam control loops

8th Sept, 2014 CAS Prague - EJ: RF Systems I 22

Minimal RF system (of a synchrotron)

8th Sept, 2014 CAS Prague - EJ: RF Systems I 23

โ€ข The frequency has to be controlled to follow the magnetic field such that the beam remains in the centre of the vacuum chamber.

โ€ข The voltage has to be controlled to allow for capture at injection, a correct bucket area during acceleration, matching before ejection; phase may have to be controlled for transition crossing and for synchronisation before ejection.

Low-level RF High-Power RF

Fast RF Feed-back loop

8th Sept, 2014 CAS Prague - EJ: RF Systems I 24

โ€ข Compares actual RF voltage and phase with desired and corrects. โ€ข Rapidity limited by total group delay (path lengths) (some 100 ns). โ€ข Unstable if loop gain = 1 with total phase shift 180 ยฐ โ€“ design requires to stay

away from this point (stability margin) โ€ข The group delay limits the gainยทbandwidth product. โ€ข Works also to keep voltage at zero for strong beam loading, i.e. it reduces the

beam impedance.

โ…‡โˆ’โ…‰๐œ”๐œ

Fast feedback loop at work

8th Sept, 2014 CAS Prague - EJ: RF Systems I 25

Without feedback, ๐‘‰๐‘Ž๐‘๐‘ = ๐ผ๐บ0 + ๐ผ๐ต โˆ™ ๐‘ ๐œ” , where

๐‘ ๐œ” =๐‘… 1 + ๐›ฝ

1 + โ…‰๐‘„๐œ”๐œ”0

โˆ’๐œ”0๐œ”

Detect the gap voltage, feed it back to ๐ผ๐บ0 such that ๐ผ๐บ0 = ๐ผ๐‘‘๐‘Ÿ๐‘–๐‘ฃ๐‘’ โˆ’ ๐บ โˆ™ ๐‘‰๐‘Ž๐‘๐‘, where ๐บ is the total loop gain (pick-up, cable, amplifier chain โ€ฆ) Result:

๐‘‰๐‘Ž๐‘๐‘ = ๐ผ๐‘‘๐‘Ÿ๐‘–๐‘ฃ๐‘’ + ๐ผ๐ต โˆ™๐‘ ๐œ”

1 + ๐บ โˆ™ ๐‘ ๐œ”

โ€ข Gap voltage is stabilised! โ€ข Impedance seen by the beam is reduced by

the loop gain!

Plot on the right: 1+๐›ฝ

๐‘…

๐‘ ๐œ”

1+๐บโˆ™๐‘ ๐œ” vs. ๐œ”, with

the loop gain varying from 0 dB to 50 dB.

1-turn delay feed-back loop

โ€ข The speed of the โ€œfast RF feedbackโ€ is limited by the group delay โ€“ this is typically a significant fraction of the revolution period.

โ€ข How to lower the impedance over many harmonics of the revolution frequency?

โ€ข Remember: the beam spectrum is limited to relatively narrow bands around the multiples of the revolution frequency!

โ€ข Only in these narrow bands the loop gain must be high!

โ€ข Install a comb filter! โ€ฆ and extend the group delay to exactly 1 turn โ€“ in this case the loop will have the desired effect and remain stable!

8th Sept, 2014 CAS Prague - EJ: RF Systems I 26

0.5 1.0 1.5 2.0

2

4

6

8

10

Field amplitude control loop (AVC)

8th Sept, 2014 CAS Prague - EJ: RF Systems I 27

โ€ข Compares the detected cavity voltage to the voltage program. The error signal serves to correct the amplitude

Tuning loop

8th Sept, 2014 CAS Prague - EJ: RF Systems I 28

โ€ข Tunes the resonance frequency of the cavity ๐‘“๐‘Ÿ to minimize the mismatch of the PA. โ€ข In the presence of beam loading, the optimum ๐‘“๐‘Ÿ may be ๐‘“๐‘Ÿ โ‰  ๐‘“. โ€ข In an ion ring accelerator, the tuning range might be > octave! โ€ข For fixed ๐‘“ systems, tuners are needed to compensate for slow drifts. โ€ข Examples for tuners:

โ€ข controlled power supply driving ferrite bias (varying ยต), โ€ข stepping motor driven plunger, โ€ข motorized variable capacitor, โ€ฆ

Beam phase loop

8th Sept, 2014 CAS Prague - EJ: RF Systems I 29

โ€ข Longitudinal motion: ๐‘‘2 ฮ”๐œ™

๐‘‘๐‘ก2 + ฮฉ๐‘ 2 ฮ”๐œ™ 2 = 0.

โ€ข Loop amplifier transfer function designed to damp synchrotron oscillation.

Modified equation: ๐‘‘2 ฮ”๐œ™

๐‘‘๐‘ก2 + ๐›ผ๐‘‘ ฮ”๐œ™

๐‘‘๐‘ก+ ฮฉ๐‘ 

2 ฮ”๐œ™ 2 = 0

Other loops

โ€ข Radial loop: โ€ข Detect average radial position of the beam, โ€ข Compare to a programmed radial position, โ€ข Error signal controls the frequency.

โ€ข Synchronisation loop (e.g. before ejection): โ€ข 1st step: Synchronize ๐‘“ to an external frequency (will also act

on radial position!). โ€ข 2nd step: phase loop brings bunches to correct position.

โ€ข โ€ฆ

8th Sept, 2014 CAS Prague - EJ: RF Systems I 30

A real implementation: LHC LLRF

8th Sept, 2014 CAS Prague - EJ: RF Systems I 31

Fields in a waveguide

8th Sept, 2014 CAS Prague - EJ: RF Systems I 32

Wave vector ๐’Œ:

the direction of ๐‘˜ is the direction of propagation,

the length of ๐‘˜ is the phase shift per unit length.

๐‘˜ behaves like a vector.

Homogeneous plane wave

8th Sept, 2014 CAS Prague - EJ: RF Systems I

33

z

x

Ey

๐ธ โˆ ๐‘ข๐‘ฆ cos ๐œ”๐‘ก โˆ’ ๐‘˜ โˆ™ ๐‘Ÿ

๐ต โˆ ๐‘ข๐‘ฅ cos ๐œ”๐‘ก โˆ’ ๐‘˜ โˆ™ ๐‘Ÿ

๐‘˜ โˆ™ ๐‘Ÿ =๐œ”

๐‘๐‘ง cos๐œ‘ + ๐‘ฅ sin๐œ‘

๐‘˜โŠฅ =๐œ”๐‘

๐‘

๐‘˜๐‘ง =๐œ”

๐‘1 โˆ’

๐œ”๐‘

๐œ”

2

๐‘˜ =๐œ”

๐‘

๐œ‘

Wave length, phase velocity

โ€ข The components of ๐‘˜ are related to the wavelength in the direction of that

component as ๐œ†๐‘ง =2๐œ‹

๐‘˜๐‘ง etc. , to the phase velocity as ๐‘ฃ๐œ‘,๐‘ง =

๐œ”

๐‘˜๐‘ง= ๐‘“๐œ†๐‘ง.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 34

z

x

Ey

๐‘˜โŠฅ =๐œ”๐‘

๐‘ ๐‘˜ =

๐œ”

๐‘

๐‘˜โŠฅ =๐œ”๐‘

๐‘

๐‘˜๐‘ง =๐œ”

๐‘1 โˆ’

๐œ”๐‘

๐œ”

2

๐‘˜ =๐œ”

๐‘

Superposition of 2 homogeneous plane waves

8th Sept, 2014 CAS Prague - EJ: RF Systems I 35

+ =

Metallic walls may be inserted where without perturbing the fields. Note the standing wave in x-direction!

z

x

Ey

This way one gets a hollow rectangular waveguide!

Rectangular waveguide

CAS Prague - EJ: RF Systems I 36

power flow: 1

2Re ๐ธ ร— ๐ปโˆ—๐‘‘๐ด

Fundamental (TE10 or H10) mode in a standard rectangular waveguide.

E.g. forward wave

electric field

magnetic field

power flow

power flow

Waveguide dispersion

8th Sept, 2014 CAS Prague - EJ: RF Systems I 37

What happens with different waveguide dimensions (different width ๐‘Ž)? The โ€œguided wavelengthโ€ ๐œ†๐‘” varies

from โˆž at ๐‘“๐‘ to ๐œ† at very high frequencies.

cutoff: ๐‘“๐‘ =๐‘

2 ๐‘Ž

2

1

cz

ck

ck

1

2

3

1: ๐‘Ž = 52 mm ๐‘“

๐‘“๐‘= 1.04

๐‘“ = 3 GHz

2: ๐‘Ž = 72.14 mm ๐‘“

๐‘“๐‘= 1.44

3: ๐‘Ž = 144.3 mm ๐‘“

๐‘“๐‘= 2.88

๐‘“ ๐‘“๐‘

๐‘˜๐‘ง

Phase velocity ๐‘ฃ๐œ‘,๐‘ง

8th Sept, 2014 CAS Prague - EJ: RF Systems I 38

2

1

cz

ck

ck

1

2

3

The phase velocity is the speed with which the crest or a zero-crossing travels in ๐‘ง-direction. Note in the animations on the right that, at constant ๐‘“, it is ๐‘ฃ๐œ‘,๐‘ง โˆ ๐œ†๐‘”.

Note that at ๐‘“ = ๐‘“๐‘ , ๐‘ฃ๐œ‘,๐‘ง = โˆž!

With ๐‘“ โ†’ โˆž, ๐‘ฃ๐œ‘,๐‘ง โ†’ ๐‘!

z

z

v

k

,

1

z

z

v

k

,

1

z

z

v

k

,

1

1: ๐‘Ž = 52 mm ๐‘“

๐‘“๐‘= 1.04

๐‘“ = 3 GHz

2: ๐‘Ž = 72.14 mm ๐‘“

๐‘“๐‘= 1.44

3: ๐‘Ž = 144.3 mm ๐‘“

๐‘“๐‘= 2.88

cutoff: ๐‘“๐‘ =๐‘

2 ๐‘Ž ๐‘“ ๐‘“๐‘

๐‘˜๐‘ง

Radial waves

โ€ข Also radial waves may be interpreted as superpositions of plane waves.

โ€ข The superposition of an outward and an inward radial wave can result in the field of a round hollow waveguide.

8th Sept, 2014 CAS Prague - EJ: RF Systems I 39

๐ธ๐‘ง โˆ ๐ป๐‘›2

๐‘˜๐œŒ๐œŒ cos ๐‘›๐œ‘ ๐ธ๐‘ง โˆ ๐ป๐‘›1

๐‘˜๐œŒ๐œŒ cos ๐‘›๐œ‘ ๐ธ๐‘ง โˆ ๐ฝ๐‘› ๐‘˜๐œŒ๐œŒ cos ๐‘›๐œ‘

Round waveguide modes

8th Sept, 2014 CAS Prague - EJ: RF Systems I 40

TE11 โ€“ fundamental

mm/

9.87

GHz a

fc mm/

8.114

GHz a

fc mm/

9.182

GHz a

fc

TM01 โ€“ axial field TE01 โ€“ low loss

๐ธ

๐ป

From waveguide to cavity

8th Sept, 2014 CAS Prague - EJ: RF Systems I 41

Waveguide perturbed by discontinuities (notches)

8th Sept, 2014 CAS Prague - EJ: RF Systems I 42

โ€œnotchesโ€

Reflections from notches lead to a superimposed standing wave pattern. โ€œTrapped modeโ€

Signal flow chart

Short-circuited waveguide

8th Sept, 2014 CAS Prague - EJ: RF Systems I 43

TM010 (no axial dependence) TM011 TM012

๐ธ

๐ป

Single waveguide mode between two shorts

8th Sept, 2014 CAS Prague - EJ: RF Systems I 44

short circuit

short circuit

Eigenvalue equation for field amplitude ๐‘Ž:

๐‘Ž = ๐‘Ž โ…‡โˆ’โ…‰๐‘˜๐‘ง2๐‘™ Non-vanishing solutions exist for 2๐‘˜๐‘ง๐‘™ = 2 ๐œ‹๐‘š.

With ๐‘˜๐‘ง =๐œ”

๐‘1 โˆ’

๐œ”

๐œ”๐‘

2, this becomes ๐‘“0

2 = ๐‘“๐‘2 + ๐‘

๐‘š

2๐‘™

2.

Signal flow chart

โ…‡โˆ’โ…‰๐‘˜๐‘ง๐‘™

โ…‡โˆ’โ…‰๐‘˜๐‘ง๐‘™

โˆ’1 โˆ’1

๐‘Ž

Simple pillbox cavity

8th Sept, 2014 CAS Prague - EJ: RF Systems I 45

electric field (purely axial) magnetic field (purely azimuthal)

(only 1/2 shown)

TM010-mode

Pillbox with beam pipe

8th Sept, 2014 CAS Prague - EJ: RF Systems I 46

electric field magnetic field

(only 1/4 shown) TM010-mode

One needs a hole for the beam pipe โ€“ circular waveguide below cutoff

A more practical pillbox cavity

8th Sept, 2014 CAS Prague - EJ: RF Systems I 47

electric field magnetic field

(only 1/4 shown) TM010-mode

Round of sharp edges (field enhancement!)

Some real โ€œpillboxโ€ cavities

8th Sept, 2014 CAS Prague - EJ: RF Systems I 48

CERN PS 200 MHz cavities

End of RF Systems I

8th Sept, 2014 CAS Prague - EJ: RF Systems I 49


Top Related