Download - Outline Chapter 6

Transcript
Page 1: Outline Chapter 6

1

Schaum’s OutlinePROBABILTY and STATISTICS

Chapter 6 ESTIMATION THEORY

Presented by Professor Carol Dahl

Examples from D. Salvitti

J. Mazumdar C. Valencia

Page 2: Outline Chapter 6

2

Outline Chapter 6Trader in energy stocks

random variable Y = value of share

want estimates µy, σY

Y = ß0 + ß1X+ want estimates Ŷ, b0, b1

Properties of estimatorsunbiased estimatesefficient estimates

Page 3: Outline Chapter 6

3

Outline Chapter 6Types of estimators

Point estimates µ = 7

Interval estimatesµ = 7+/-2confidence interval

Page 4: Outline Chapter 6

4

Outline Chapter 6

Population parameters and confidence intervals Means

Large sample sizes

Small sample sizes

Proportions

Differences and Sums

Variances

Variances ratios

Page 5: Outline Chapter 6

5

Properties of Estimators - Unbiased

Unbiased Estimator of Population Parameter

estimator expected value = to population parameter

)ˆ(E

Page 6: Outline Chapter 6

6

Unbiased Estimates

Population Parameters:

Sample Parameters:

are unbiased estimates

Expected value of standard deviation not unbiased

22 σ)SE( μ)XE(

2σ ; μ

2S , X

2S ; X

σ)SΕ(

Page 7: Outline Chapter 6

7

Properties of Estimators - Efficient

Efficient Estimator –

if distributions of two statistics same

more efficient estimator = smaller variance

efficient = smallest variance of all unbiased estimators

Page 8: Outline Chapter 6

8

Unbiased and Efficient Estimates

Target

Estimates which are efficient and unbiased

Not always possible

often us biased and inefficient

easy to obtain

Page 9: Outline Chapter 6

9

Types of Estimates for Population Parameter

Point Estimate

single number

Interval Estimate

between two numbers.

Page 10: Outline Chapter 6

10Estimates of Mean – Known Variance

Large Sample or Finite with Replacement

X = value of share

sample mean is $32

volatility is known σ2 = $4.00

confidence interval for share value

Need

estimator for mean

need statistic with

mean of population

estimator

Page 11: Outline Chapter 6

11

Estimates of Mean- Sampling Statistic

P(-1.96 < <1.96) = 95%

)1,0(N

n

X

n

X

2.5%

Page 12: Outline Chapter 6

12

Confidence Interval for Mean

P(-1.96 < <1.96) = 95%

P(-1.96 < <1.96 ) = 95%

P(-1.96 -X < -µ <1.96 - X ) = 95%

Change direction of inequality

P(+1.96 +X > µ > -1.96 + X ) = 95%

n

X

Xn

n

n

n

n

n

Page 13: Outline Chapter 6

13

Confidence Interval for Mean

P(+1.96 +X > µ > -1.96 + X ) = 95%

Rearrange

P(X - 1.96 < µ <X + 1.96 ) = 95%

Plug in sample values and drop probabilities

X = value of share, sample = 64

sample mean is $32

volatility is σ2 = $4

{32 – 1.96*2/64, 32 + 1.96*2/64} = {31.51,32.49}

n

n

n

n

Page 14: Outline Chapter 6

14

Estimates for Mean for Normal

Take a sample

point estimate

compute sample mean

interval estimate – 0.95 (95%+) = (1 - 0.05)

X +/-1.96

X +/-Zc

(Z<Zc) = 0.975 = (1 – 0.05/2)

95% of intervals contain

5% of intervals do not contain

n

n

Page 15: Outline Chapter 6

15

Estimates for Mean for Normal

interval estimate – 0.95 (95%+) = (1 - 0.05)

X +/-Zc

(Z<Zc) = 0.975 = (1 – 0.05/2)

interval estimate – (1-) %

X +/-Zc

(Z<Zc) = (1 – /2)

% of intervals don’t contain

(1- )% of intervals do contain

n

(Z<Zc) = 0.975 = (1 – 0.05/2)

n

Page 16: Outline Chapter 6

16

Common values for corresponding to various confidence levels used in practice are:

Confidence level 99.73% 99% 98% 96% 95.45% 95% 90% 68.27% 50%3.00 2.58 2.33 2.05 2.00 1.96 1.645 1.00 0.6745

Confidence Interval Estimatesof Population Parameters

Page 17: Outline Chapter 6

17

Functions in EXCEL

Menu Click on Insert Function or

=confidence(,stdev,n)

=confidence(0.05,2,64)= 0.49

X+/-confidence(0.05,2,64)

=normsinv(1-/2) gives Zc value

X+/-normsinv(1-/2)

32 +/- 1.96*2/64

Confidence Interval Estimatesof Population Parameters

n

Page 18: Outline Chapter 6

18

Confidence interval Confidence level

)%-(1 @ 1-Nn-N

nσZX C

Confidence Intervals for MeansFinite Population (N) no Replacement

Page 19: Outline Chapter 6

19

Evaluate density of oil in new reservoir

81 samples of oil (n)

from population of 500 different wells

samples density average is 29°API

standard deviation is known to be 9 °API

= 0.05

Example: Finite Population without replacement

Page 20: Outline Chapter 6

20

X = 29 , N= 500, n = 81 , σ = 9 , = 0.05

Zc = 1.96

1-Nn-N

nZX C

Confidence Intervals for MeansFinite Population (N) no Replacement

Known Variance

1.8029 1500

81 - 50081

929μ So

95% @ 80.31μ27.20 or

Page 21: Outline Chapter 6

21

= N(0.1)

df

2/df= tdf

t-Distribution

But don’t know Variance

n

X

1n

s)1n(2

2

=

Page 22: Outline Chapter 6

22Confidence Intervals of Means

t- distribution

n

X

1n

s)1n(2

2

=

n

X

2

2

2

22

2

s

)1n(1s)1n(

11n

s)1n(

n

X

n

X

= =n

sX

=

Page 23: Outline Chapter 6

23Confidence Intervals of Means

Normal compared to t- distribution

n

X

ns

X

Normal t distribution

X +/-Zc n

ns

X +/-tc

Page 24: Outline Chapter 6

24

Example:

Eight independent measurements diameter of drill bit

3.236, 3.223, 3.242, 3.244, 3.228, 3.253, 3.253, 3.230

99% confidence interval for diameter of drill bit

Confidence Interval Unknown Variance

ns

X +/-tc

Page 25: Outline Chapter 6

25Confidence Intervals for Means

Unknown Variance

X = ΣXi/n

3.236+3.223+3.242+3.244+3.228+3.253+3.253+3.230

8X = 3.239

ŝ2 = Σ(Xi - X) = (3.236- X)2 + . . .(3.230 - X)2

(n-1) (8-1)

ŝ = 0.0113

ns

X +/-tc

Page 26: Outline Chapter 6

26

X = 3.239, n = 8, ŝ = 0.0113, =0.01,

1- /2=0.995

From the t-table with 7 degrees of freedom, we

find tc= t7,0.995=3.50

Confidence Intervals for MeansUnknown Variance

ns

X +/-tc

.005%

tc-tc

Find tc from Table of Excel

1-/2=.975

Page 27: Outline Chapter 6

27Confidence Intervals for Means

Unknown Variance

3.499483

/2= 0.005%

tc-tc

Depends on Table

1-/2=.975

GHJ /2 = 0.005 tc = 2. 499

Schaums 1- /2 = 0.995 tc = 2.35

Excel =tinv(0.01,7) = 3.4994833.499483

Page 28: Outline Chapter 6

28

X = 3.239, n = 8, ŝ = 0.0113, =0.01,

8

0.011350.33.239diam So

99% @ 3.253diam3.225 or

Confidence Intervals for MeansUnknown Variance

ns

X +/-tc

Page 29: Outline Chapter 6

29

600 engineers surveyed

250 in favor of drilling a second exploratory well

95% confidence interval for

proportion in favor of drilling the second well

Approximate by Normal in large samples

Solution: n=600, X=250 (successes), = 0.05

zc = 1.96 and %7.414167.0

600250

P

Example

Confidence Intervals for Proportions

Page 30: Outline Chapter 6

30

600 engineers surveyed

250 in favor of drilling a second exploratory well.

95% confidence interval for

proportion in favor of drilling the second well

Approximate by Normal in large samples

Solution: n=600, X=250 (successes), = 0.05

zc = 1.96 and %7.414167.0600250

P

Example

Confidence Intervals for Proportions

Page 31: Outline Chapter 6

31

Confidence Intervals for Proportions

n

p)-p(1zp c

sampling from large population

or finite one with replacement

Page 32: Outline Chapter 6

32Confidence Intervals Differences and Sums

Known Variances

Samples are independent

2 21 2

1 2

1 2cX X z

n n

Page 33: Outline Chapter 6

33

Example

sample of 200 steel milling balls

average life of 350 days - standard deviation 25 days

new model strengthened with molybdenum

sample of 150 steel balls

average life of 250 days - standard deviation 50 days

samples independent

Find 95% confidence interval for difference μ1-μ2

Confidence Interval for Differences and Sums – Known Variance

Page 34: Outline Chapter 6

34

Example

2 2

1 2

25 50Then μ μ 350 250 1.96 or 100 8.72

200 150

Solution: X1=350, σ1=25, n1=200, X2=250, σ2=50, n2=150

Confidence Intervals for Differences and Sums

2 21 2

1 2

1 2cX X z

n n

Page 35: Outline Chapter 6

35

Where: P1, P2 two sample proportions,

n1, n2 sizes of two samples

1 1 2 21 2

1 2

1- 1-c

p p p pP P z

n n

Confidence Intervals for Differences and Sums – Large Samples

Page 36: Outline Chapter 6

36

0.75 1-0.75 0.33 1-0.33So 0.75 0.33 1.96

200 300

random samples

200 drilled holes in mine 1, 150 found minerals

300 drilled holes in mine 2, 100 found minerals c

Construct 95% confidence interval difference in proportions

Solution: P1=150/200=0.75, n1=200, P2=100/300=0.33,n2=300

Example

With 95% of confidence the difference of proportions {0.42, 0.08}

Confidence Intervals for Differences and Sums

Page 37: Outline Chapter 6

37

0.75 1-0.75 0.33 1-0.33So 0.75 0.33 1.96

200 300

Solution: P1=150/200=0.75, n1=200,

P2=100/300=0.33, n2=300

Example

95% of confidence the difference of proportions

[0.08, 0.42]

Confidence Intervals Differences and Sums

Page 38: Outline Chapter 6

38

Confidence Intervals for Variances

Need statistic with

population parameter 2

estimate for population parameter ŝ2

its distribution - 2

Page 39: Outline Chapter 6

39

Confidence Intervals for Variances

1)

s)1n((P 2

above2/2

22

below2/

has a chi-squared distribution

n-1 degrees of freedom.

Find interval such that σ lies in the interval for

95% of samples

95% confidence interval

22

2 2

ˆ1n SnS

Page 40: Outline Chapter 6

40

Confidence Intervals for Variances

1)

s)1n((P 2

above2/2

22

below2/

Rearrange

1)s)1n(s)1n(

(P2

below2/

22

2

above2/

2

Take square root if want confidence interval for

standard deviation

Page 41: Outline Chapter 6

41Confidence Intervals for Variances and

Standard Deviations

2

below2/

2

2

above2/

2 s)1n(,

s)1n(

Drop probabilities when substitute in sample values

1 - confidence interval for variance

2

below2/

2

2

above2/

2 s)1n(,

s)1n(

1 - confidence interval for standard deviation

Page 42: Outline Chapter 6

42

Variance of amount of copper reserves

16 estimates chosen at random

ŝ2 = 2.4 thousand million tons

Find 99% confidence interval variance

Solution: ŝ2=2.4, n=16,

degrees of freedom = 16-1= 15

ExampleConfidence Intervals for Variance

2

below2/

2

2

above2/

2 s)1n(s)1n(

Page 43: Outline Chapter 6

43How to get 2

Critical Values

/2/2

Not symmetric

2 lower 2 upper

Page 44: Outline Chapter 6

44How to get 2

Critical Values

/2/2

1-/2

GHJ area above 20.995, 20.005 4.60092, 32.8013

Schaums area below 20.005, 20.995 4.60, 32.8

Excel = chiinv(0.995,15) = 4.60091559877155

Excel = chiinv(0.005,15) = 32.8013206461633

Not symmetric

1-/2

Page 45: Outline Chapter 6

45

99% confidence interval variance of reserves

Solution: ŝ=2.4 (n-1)=15

2lower = 4.60, 2upper = 32.8

Example

Confidence Intervals for Variances and Standard Deviations

2

below2/

2

2

above2/

2 s)1n(,

s)1n(

6.44.2*15

,8.32

4.2*15

Page 46: Outline Chapter 6

46

Two independent random samples

size m and n

population variances

estimated variances ŝ21, ŝ2

2

interested in whether variances are the same

21/ 2

2

2 21 2,

Confidence Intervals for Ratio of Variances

Page 47: Outline Chapter 6

47

Need statistic with

population parameter 21/ 2

2

estimate for population parameter ŝ21/ ŝ2

2

its distribution - F

Confidence Intervals for Ratio of Variances

Page 48: Outline Chapter 6

48

F-Distribution

df1

df2

2df,1df2df

1df F2

2

Page 49: Outline Chapter 6

49

F-Distribution

)1n,1n(2

1

2

2

2

2

2

1

2

2

2

22

1

2

2

11

2

21

2

21

2

1

Fss

)1n(

s)1n()1n(

s)1n(

df

df

Page 50: Outline Chapter 6

50

Need statistic with

population parameter 21/ 2

2

estimate for population parameter ŝ21/ ŝ2

2

its distribution - F

Confidence Intervals for Ratio of Variances

)1n,1n(2

1

2

2

2

2

2

1

21F

ss

Page 51: Outline Chapter 6

51

Confidence Intervals for Ratio of Variances

1)F

ss

F(P /2 above)1n,1n(2

1

2

2

2

2

2

1/2 below)1n,1n( 2121

Rearrange

1)F

1ss

F1

ss

(P/2 above)1n,1n(

2

2

2

12

2

2

1

/2 below)1n,1n(

2

2

2

1

2121

Page 52: Outline Chapter 6

52

Confidence Intervals for Ratio of Variances

1)F

1ss

F1

ss

(P/2 below)1n,1n(

2

2

2

12

2

2

1

/2 above)1n,1n(

2

2

2

1

2121

Put smallest first, largest second

/2 below)1n,1n(

2

2

2

1

/2 above)1n,1n(

2

2

2

1

2121F

1ss

,F

1ss

When substitute in values drop probabilities

1- confidence interval for 21/ 2

2

Page 53: Outline Chapter 6

53

Example

Two nickel ore samples

of sizes 16 and 10

unbiased estimates of variances 24 and 18

Find 90% confidence limits for ratio of variances

Solution: ŝ21 = 24, n1 = 16, ŝ2

2 = 18, n2 = 10,

Confidence Intervals for Variances

/2 below)1n,1n(

2

2

2

1

/2 above)1n,1n(

2

2

2

1

2121F

1ss

,F

1ss

Page 54: Outline Chapter 6

54

Confidence Intervals for Ratio of Variances

/2/2

F upperF lower

GHJ area above F0.95,15,9, F0.05,15,9 ? 3.01 Schaums area below F0.05,15,9, F0.95,15,9 ? 3.01Area aboveExcel = Finv(0.95,15,9) = 0.386454546279388Excel = Finv(0.05,15,9) = 3.00610197251669

Tablesdf1d

f2

Page 55: Outline Chapter 6

55

Confidence Intervals for Ratio of Variances

/2/2

F upperF lower

GHJ area above F0.95,15,9

P(F15,9>Fc) = 0.95

P(1/F15,9<1/Fc) = 0.95

But 1/F15,9 = F9,15

P(F9,15<1/Fc) = 0.95

P(F9,15<1/Fc) = 0.05

1/Fc = 2.59 Fc = 0.3861

Page 56: Outline Chapter 6

56

Example

Two nickel ore samples

Solution: ŝ21 = 24, n1 = 16, ŝ2

2 = 18, n2 = 10,

Confidence Intervals for Variances

/2 below)1n,1n(

2

2

2

1

/2 above)1n,1n(

2

2

2

1

2121F

1ss

,F

1ss

]45.3,44.0[3865.01

*1824

,0061.3*1

1824

Page 57: Outline Chapter 6

57

Maximum Likelihood Estimates

Point Estimates

x is population with density function f(x,)

if know - know the density function

2 where = degrees of freedom

Poisson λxe-λ/x! = λ (the mean)

If sample independently from f n times

x1, x2, . . .xn

a sample

if consider all possible samples of n

a sampling distribution

Page 58: Outline Chapter 6

58

Maximum Likelihood Estimates

If sample independently from f n times

x1, x2, . . .xn

a sample

if consider all possible samples of n

a sampling distribution

called likelihood function

1 2 2, , ,L f x f x f x

Page 59: Outline Chapter 6

59

which maximizes the likelihood function

Derivative of L with respect to and setting it to 0

Solve for

Usually easier to take logs first

log(L) = log(f(x1,) + log(f(x2,)+ . . .+ log(f(xn,)

Maximum Likelihood Estimates

1 2 2, , ,L f x f x f x

Page 60: Outline Chapter 6

60

log(L) = log(f(x1,) + log(f(x2,) +. . .+ log(f(xn,)

Solution of this equation is maximum likelihood estimator

work out example 6.25

work out example 6.26

1

1

, ,1 1+ + 0

, ,n

n

f x f x

f x f x

Maximum Likelihood Estimates

Page 61: Outline Chapter 6

61

Sum Up Chapter 6

Y = ß0 + ß1X

Ŷ, b0, b1

Properties of estimatorsunbiased estimatesefficient estimates

Types of estimatorsPoint estimates Interval estimates

Page 62: Outline Chapter 6

62

Sum Up Chapter 6

Y- µY, Y, Y, ŝ2

In 590-690

Y = ß0 + ß1X

Ŷ, b0, b1

Properties of estimators

unbiased estimates

efficient estimates

Types of estimators

Point estimates

Interval estimates

Page 63: Outline Chapter 6

63

Sum Up Chapter 6Need statistic with

population parameter estimate for population parameterits distribution

Page 64: Outline Chapter 6

64

Sum Up Chapter 6

Population parameters and confidence intervals

Mean – Normal

Know variance and population normal

Large sample size can use estimated variance

n

X

nZX2

c

Page 65: Outline Chapter 6

65

Sum Up Chapter 6

Proportions

large sample approximate by normal

Differences of means (known variance)

n

p)-p(1zp c

2 21 2

1 2

1 2cX X z

n n

Page 66: Outline Chapter 6

66

Sum Up Chapter 6

Mean

population normal - unknown variance

ns

X

nstX

2

1n

Page 67: Outline Chapter 6

67

Sum Up Chapter 6

Variances

2

2s)1n(

2

below2/

2

2

above2/

2 s)1n(,

s)1n(

Page 68: Outline Chapter 6

68

Sum Up Chapter 6

Variances ratios

)1n,1n(2

1

2

2

2

2

2

1

21F

ss

/2 below)1n,1n(

2

2

2

1

/2 above)1n,1n(

2

2

2

1

2121F

1ss

,F

1ss

Page 69: Outline Chapter 6

69

Sum Up Chapter 6

Maximum Likelihood Estimators

Pick which maximizes the function

1 2 2, , ,L f x f x f x

Page 70: Outline Chapter 6

70

End of Chapter 6!