Outline Chapter 6
Embed Size (px)
description
Transcript of Outline Chapter 6

1
Schaum’s OutlinePROBABILTY and STATISTICS
Chapter 6 ESTIMATION THEORY
Presented by Professor Carol Dahl
Examples from D. Salvitti
J. Mazumdar C. Valencia

2
Outline Chapter 6Trader in energy stocks
random variable Y = value of share
want estimates µy, σY
Y = ß0 + ß1X+ want estimates Ŷ, b0, b1
Properties of estimatorsunbiased estimatesefficient estimates

3
Outline Chapter 6Types of estimators
Point estimates µ = 7
Interval estimatesµ = 7+/-2confidence interval

4
Outline Chapter 6
Population parameters and confidence intervals Means
Large sample sizes
Small sample sizes
Proportions
Differences and Sums
Variances
Variances ratios

5
Properties of Estimators - Unbiased
Unbiased Estimator of Population Parameter
estimator expected value = to population parameter
)ˆ(E

6
Unbiased Estimates
Population Parameters:
Sample Parameters:
are unbiased estimates
Expected value of standard deviation not unbiased
22 σ)SE( μ)XE(
2σ ; μ
2S , X
2S ; X
σ)SΕ(

7
Properties of Estimators - Efficient
Efficient Estimator –
if distributions of two statistics same
more efficient estimator = smaller variance
efficient = smallest variance of all unbiased estimators

8
Unbiased and Efficient Estimates
Target
Estimates which are efficient and unbiased
Not always possible
often us biased and inefficient
easy to obtain

9
Types of Estimates for Population Parameter
Point Estimate
single number
Interval Estimate
between two numbers.

10Estimates of Mean – Known Variance
Large Sample or Finite with Replacement
X = value of share
sample mean is $32
volatility is known σ2 = $4.00
confidence interval for share value
Need
estimator for mean
need statistic with
mean of population
estimator

11
Estimates of Mean- Sampling Statistic
P(-1.96 < <1.96) = 95%
)1,0(N
n
X
n
X
2.5%

12
Confidence Interval for Mean
P(-1.96 < <1.96) = 95%
P(-1.96 < <1.96 ) = 95%
P(-1.96 -X < -µ <1.96 - X ) = 95%
Change direction of inequality
P(+1.96 +X > µ > -1.96 + X ) = 95%
n
X
Xn
n
n
n
n
n

13
Confidence Interval for Mean
P(+1.96 +X > µ > -1.96 + X ) = 95%
Rearrange
P(X - 1.96 < µ <X + 1.96 ) = 95%
Plug in sample values and drop probabilities
X = value of share, sample = 64
sample mean is $32
volatility is σ2 = $4
{32 – 1.96*2/64, 32 + 1.96*2/64} = {31.51,32.49}
n
n
n
n

14
Estimates for Mean for Normal
Take a sample
point estimate
compute sample mean
interval estimate – 0.95 (95%+) = (1 - 0.05)
X +/-1.96
X +/-Zc
(Z<Zc) = 0.975 = (1 – 0.05/2)
95% of intervals contain
5% of intervals do not contain
n
n

15
Estimates for Mean for Normal
interval estimate – 0.95 (95%+) = (1 - 0.05)
X +/-Zc
(Z<Zc) = 0.975 = (1 – 0.05/2)
interval estimate – (1-) %
X +/-Zc
(Z<Zc) = (1 – /2)
% of intervals don’t contain
(1- )% of intervals do contain
n
(Z<Zc) = 0.975 = (1 – 0.05/2)
n

16
Common values for corresponding to various confidence levels used in practice are:
Confidence level 99.73% 99% 98% 96% 95.45% 95% 90% 68.27% 50%3.00 2.58 2.33 2.05 2.00 1.96 1.645 1.00 0.6745
Confidence Interval Estimatesof Population Parameters

17
Functions in EXCEL
Menu Click on Insert Function or
=confidence(,stdev,n)
=confidence(0.05,2,64)= 0.49
X+/-confidence(0.05,2,64)
=normsinv(1-/2) gives Zc value
X+/-normsinv(1-/2)
32 +/- 1.96*2/64
Confidence Interval Estimatesof Population Parameters
n

18
Confidence interval Confidence level
)%-(1 @ 1-Nn-N
nσZX C
Confidence Intervals for MeansFinite Population (N) no Replacement

19
Evaluate density of oil in new reservoir
81 samples of oil (n)
from population of 500 different wells
samples density average is 29°API
standard deviation is known to be 9 °API
= 0.05
Example: Finite Population without replacement

20
X = 29 , N= 500, n = 81 , σ = 9 , = 0.05
Zc = 1.96
1-Nn-N
nZX C
Confidence Intervals for MeansFinite Population (N) no Replacement
Known Variance
1.8029 1500
81 - 50081
929μ So
95% @ 80.31μ27.20 or

21
= N(0.1)
df
2/df= tdf
t-Distribution
But don’t know Variance
n
X
1n
s)1n(2
2
=

22Confidence Intervals of Means
t- distribution
n
X
1n
s)1n(2
2
=
n
X
2
2
2
22
2
s
)1n(1s)1n(
11n
s)1n(
n
X
n
X
= =n
sX
=

23Confidence Intervals of Means
Normal compared to t- distribution
n
X
ns
X
Normal t distribution
X +/-Zc n
ns
X +/-tc

24
Example:
Eight independent measurements diameter of drill bit
3.236, 3.223, 3.242, 3.244, 3.228, 3.253, 3.253, 3.230
99% confidence interval for diameter of drill bit
Confidence Interval Unknown Variance
ns
X +/-tc

25Confidence Intervals for Means
Unknown Variance
X = ΣXi/n
3.236+3.223+3.242+3.244+3.228+3.253+3.253+3.230
8X = 3.239
ŝ2 = Σ(Xi - X) = (3.236- X)2 + . . .(3.230 - X)2
(n-1) (8-1)
ŝ = 0.0113
ns
X +/-tc

26
X = 3.239, n = 8, ŝ = 0.0113, =0.01,
1- /2=0.995
From the t-table with 7 degrees of freedom, we
find tc= t7,0.995=3.50
Confidence Intervals for MeansUnknown Variance
ns
X +/-tc
.005%
tc-tc
Find tc from Table of Excel
1-/2=.975

27Confidence Intervals for Means
Unknown Variance
3.499483
/2= 0.005%
tc-tc
Depends on Table
1-/2=.975
GHJ /2 = 0.005 tc = 2. 499
Schaums 1- /2 = 0.995 tc = 2.35
Excel =tinv(0.01,7) = 3.4994833.499483

28
X = 3.239, n = 8, ŝ = 0.0113, =0.01,
8
0.011350.33.239diam So
99% @ 3.253diam3.225 or
Confidence Intervals for MeansUnknown Variance
ns
X +/-tc

29
600 engineers surveyed
250 in favor of drilling a second exploratory well
95% confidence interval for
proportion in favor of drilling the second well
Approximate by Normal in large samples
Solution: n=600, X=250 (successes), = 0.05
zc = 1.96 and %7.414167.0
600250
P
Example
Confidence Intervals for Proportions

30
600 engineers surveyed
250 in favor of drilling a second exploratory well.
95% confidence interval for
proportion in favor of drilling the second well
Approximate by Normal in large samples
Solution: n=600, X=250 (successes), = 0.05
zc = 1.96 and %7.414167.0600250
P
Example
Confidence Intervals for Proportions

31
Confidence Intervals for Proportions
n
p)-p(1zp c
sampling from large population
or finite one with replacement

32Confidence Intervals Differences and Sums
Known Variances
Samples are independent
2 21 2
1 2
1 2cX X z
n n

33
Example
sample of 200 steel milling balls
average life of 350 days - standard deviation 25 days
new model strengthened with molybdenum
sample of 150 steel balls
average life of 250 days - standard deviation 50 days
samples independent
Find 95% confidence interval for difference μ1-μ2
Confidence Interval for Differences and Sums – Known Variance

34
Example
2 2
1 2
25 50Then μ μ 350 250 1.96 or 100 8.72
200 150
Solution: X1=350, σ1=25, n1=200, X2=250, σ2=50, n2=150
Confidence Intervals for Differences and Sums
2 21 2
1 2
1 2cX X z
n n

35
Where: P1, P2 two sample proportions,
n1, n2 sizes of two samples
1 1 2 21 2
1 2
1- 1-c
p p p pP P z
n n
Confidence Intervals for Differences and Sums – Large Samples

36
0.75 1-0.75 0.33 1-0.33So 0.75 0.33 1.96
200 300
random samples
200 drilled holes in mine 1, 150 found minerals
300 drilled holes in mine 2, 100 found minerals c
Construct 95% confidence interval difference in proportions
Solution: P1=150/200=0.75, n1=200, P2=100/300=0.33,n2=300
Example
With 95% of confidence the difference of proportions {0.42, 0.08}
Confidence Intervals for Differences and Sums

37
0.75 1-0.75 0.33 1-0.33So 0.75 0.33 1.96
200 300
Solution: P1=150/200=0.75, n1=200,
P2=100/300=0.33, n2=300
Example
95% of confidence the difference of proportions
[0.08, 0.42]
Confidence Intervals Differences and Sums

38
Confidence Intervals for Variances
Need statistic with
population parameter 2
estimate for population parameter ŝ2
its distribution - 2

39
Confidence Intervals for Variances
1)
s)1n((P 2
above2/2
22
below2/
has a chi-squared distribution
n-1 degrees of freedom.
Find interval such that σ lies in the interval for
95% of samples
95% confidence interval
22
2 2
ˆ1n SnS

40
Confidence Intervals for Variances
1)
s)1n((P 2
above2/2
22
below2/
Rearrange
1)s)1n(s)1n(
(P2
below2/
22
2
above2/
2
Take square root if want confidence interval for
standard deviation

41Confidence Intervals for Variances and
Standard Deviations
2
below2/
2
2
above2/
2 s)1n(,
s)1n(
Drop probabilities when substitute in sample values
1 - confidence interval for variance
2
below2/
2
2
above2/
2 s)1n(,
s)1n(
1 - confidence interval for standard deviation

42
Variance of amount of copper reserves
16 estimates chosen at random
ŝ2 = 2.4 thousand million tons
Find 99% confidence interval variance
Solution: ŝ2=2.4, n=16,
degrees of freedom = 16-1= 15
ExampleConfidence Intervals for Variance
2
below2/
2
2
above2/
2 s)1n(s)1n(

43How to get 2
Critical Values
/2/2
Not symmetric
2 lower 2 upper

44How to get 2
Critical Values
/2/2
1-/2
GHJ area above 20.995, 20.005 4.60092, 32.8013
Schaums area below 20.005, 20.995 4.60, 32.8
Excel = chiinv(0.995,15) = 4.60091559877155
Excel = chiinv(0.005,15) = 32.8013206461633
Not symmetric
1-/2

45
99% confidence interval variance of reserves
Solution: ŝ=2.4 (n-1)=15
2lower = 4.60, 2upper = 32.8
Example
Confidence Intervals for Variances and Standard Deviations
2
below2/
2
2
above2/
2 s)1n(,
s)1n(
6.44.2*15
,8.32
4.2*15

46
Two independent random samples
size m and n
population variances
estimated variances ŝ21, ŝ2
2
interested in whether variances are the same
21/ 2
2
2 21 2,
Confidence Intervals for Ratio of Variances

47
Need statistic with
population parameter 21/ 2
2
estimate for population parameter ŝ21/ ŝ2
2
its distribution - F
Confidence Intervals for Ratio of Variances

48
F-Distribution
df1
df2
2df,1df2df
1df F2
2

49
F-Distribution
)1n,1n(2
1
2
2
2
2
2
1
2
2
2
22
1
2
2
11
2
21
2
21
2
1
Fss
)1n(
s)1n()1n(
s)1n(
df
df

50
Need statistic with
population parameter 21/ 2
2
estimate for population parameter ŝ21/ ŝ2
2
its distribution - F
Confidence Intervals for Ratio of Variances
)1n,1n(2
1
2
2
2
2
2
1
21F
ss

51
Confidence Intervals for Ratio of Variances
1)F
ss
F(P /2 above)1n,1n(2
1
2
2
2
2
2
1/2 below)1n,1n( 2121
Rearrange
1)F
1ss
F1
ss
(P/2 above)1n,1n(
2
2
2
12
2
2
1
/2 below)1n,1n(
2
2
2
1
2121

52
Confidence Intervals for Ratio of Variances
1)F
1ss
F1
ss
(P/2 below)1n,1n(
2
2
2
12
2
2
1
/2 above)1n,1n(
2
2
2
1
2121
Put smallest first, largest second
/2 below)1n,1n(
2
2
2
1
/2 above)1n,1n(
2
2
2
1
2121F
1ss
,F
1ss
When substitute in values drop probabilities
1- confidence interval for 21/ 2
2

53
Example
Two nickel ore samples
of sizes 16 and 10
unbiased estimates of variances 24 and 18
Find 90% confidence limits for ratio of variances
Solution: ŝ21 = 24, n1 = 16, ŝ2
2 = 18, n2 = 10,
Confidence Intervals for Variances
/2 below)1n,1n(
2
2
2
1
/2 above)1n,1n(
2
2
2
1
2121F
1ss
,F
1ss

54
Confidence Intervals for Ratio of Variances
/2/2
F upperF lower
GHJ area above F0.95,15,9, F0.05,15,9 ? 3.01 Schaums area below F0.05,15,9, F0.95,15,9 ? 3.01Area aboveExcel = Finv(0.95,15,9) = 0.386454546279388Excel = Finv(0.05,15,9) = 3.00610197251669
Tablesdf1d
f2

55
Confidence Intervals for Ratio of Variances
/2/2
F upperF lower
GHJ area above F0.95,15,9
P(F15,9>Fc) = 0.95
P(1/F15,9<1/Fc) = 0.95
But 1/F15,9 = F9,15
P(F9,15<1/Fc) = 0.95
P(F9,15<1/Fc) = 0.05
1/Fc = 2.59 Fc = 0.3861

56
Example
Two nickel ore samples
Solution: ŝ21 = 24, n1 = 16, ŝ2
2 = 18, n2 = 10,
Confidence Intervals for Variances
/2 below)1n,1n(
2
2
2
1
/2 above)1n,1n(
2
2
2
1
2121F
1ss
,F
1ss
]45.3,44.0[3865.01
*1824
,0061.3*1
1824

57
Maximum Likelihood Estimates
Point Estimates
x is population with density function f(x,)
if know - know the density function
2 where = degrees of freedom
Poisson λxe-λ/x! = λ (the mean)
If sample independently from f n times
x1, x2, . . .xn
a sample
if consider all possible samples of n
a sampling distribution

58
Maximum Likelihood Estimates
If sample independently from f n times
x1, x2, . . .xn
a sample
if consider all possible samples of n
a sampling distribution
called likelihood function
1 2 2, , ,L f x f x f x

59
which maximizes the likelihood function
Derivative of L with respect to and setting it to 0
Solve for
Usually easier to take logs first
log(L) = log(f(x1,) + log(f(x2,)+ . . .+ log(f(xn,)
Maximum Likelihood Estimates
1 2 2, , ,L f x f x f x

60
log(L) = log(f(x1,) + log(f(x2,) +. . .+ log(f(xn,)
Solution of this equation is maximum likelihood estimator
work out example 6.25
work out example 6.26
1
1
, ,1 1+ + 0
, ,n
n
f x f x
f x f x
Maximum Likelihood Estimates

61
Sum Up Chapter 6
Y = ß0 + ß1X
Ŷ, b0, b1
Properties of estimatorsunbiased estimatesefficient estimates
Types of estimatorsPoint estimates Interval estimates

62
Sum Up Chapter 6
Y- µY, Y, Y, ŝ2
In 590-690
Y = ß0 + ß1X
Ŷ, b0, b1
Properties of estimators
unbiased estimates
efficient estimates
Types of estimators
Point estimates
Interval estimates

63
Sum Up Chapter 6Need statistic with
population parameter estimate for population parameterits distribution

64
Sum Up Chapter 6
Population parameters and confidence intervals
Mean – Normal
Know variance and population normal
Large sample size can use estimated variance
n
X
nZX2
c

65
Sum Up Chapter 6
Proportions
large sample approximate by normal
Differences of means (known variance)
n
p)-p(1zp c
2 21 2
1 2
1 2cX X z
n n

66
Sum Up Chapter 6
Mean
population normal - unknown variance
ns
X
nstX
2
1n

67
Sum Up Chapter 6
Variances
2
2s)1n(
2
below2/
2
2
above2/
2 s)1n(,
s)1n(

68
Sum Up Chapter 6
Variances ratios
)1n,1n(2
1
2
2
2
2
2
1
21F
ss
/2 below)1n,1n(
2
2
2
1
/2 above)1n,1n(
2
2
2
1
2121F
1ss
,F
1ss

69
Sum Up Chapter 6
Maximum Likelihood Estimators
Pick which maximizes the function
1 2 2, , ,L f x f x f x

70
End of Chapter 6!