Download - aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Transcript
Page 1: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

DUE NOT SITE WITHOUT PERMISSION OF THE AUTHOR

Slope Stability Analysis of a Ancient EarthworksAshley Evans-Busch1

1 School of Human Evolution and Social Change, Center for Bioarchaeological Research, Arizona State University, Tempe 85281, USA

April 28, 2010

In the Midwest during the Middle Woodland period (250 B.C. to A.D. 50), ancient peoples constructed thousands of earthworks along the tributaries of the Mississippi valley, some of which still stand meters above the surrounding floodplain, but their shape and size have been altered by agricultural processes. Some of the most well preserved and documented sites are found in south-central Ohio, within the Scioto River Valley, and these earthworks have been the focus of archaeological research in exploring the life ways of Middle Woodland peoples. As earthwork construction was import to the Hopewellian peoples, the following article explores the process of earthwork construction drawing from geotechnical engineering design. Like modern engineers, ancient earthwork builders had to weigh the structural advantages of soils with the cost of procuring different soils (i.e. distance to resource, effort of excavation, and ease of transportation). To explore these issues, the following article identifies the physical properties and strength parameters (cohesion and friction angle) of soil found in the vicinity of the Hopewell site embankments. Next, local soil properties were used to determine the slope stability of various potential geometries of the Hopewell embankments. To evaluate the potential slope geometries, each theoretical failure surfaces was compared to an current failure surface identified by geophysical survey. Identifying the original geometry of the embankment walls larger anthropological implications for identifying labor costs, community planning, technological style, and stratigraphies of artifact assemblages.

Keywords: Hopewell earthworks, ancient soils, slope stability

The ancient monumental earthworks found along the Mississippi valley and its tributaries have captivated the imagination of scholars and the public since the early 19th century (Atwater 1820; Squier and Davis 1848). In the Scioto valley of Ohio, Middle Woodland peoples constructed impressive geometric earthen embankments enclosing upwards of 100 acres and embankments standing meters over the valley floor (Figure 1). The sheer size of these remarkable structures suggests large scale planning, designing, and engineering of soil.

Research conducted on ancient structures typically falls into the realm of archaeology, with previous interpretations of earthworks focusing on energetic models (Trigger 1990), power (Nielson 1995; Kolb et al. 2004), world view (Buikstra and Charles 1998), mathematics (Byers 2004), cosmology (Bradley 1998, 2000), and community interaction (Carr and Case 2005, Bernardini 2004) to name just a few. Regardless of the enclosures higher level meaning, the embankment walls were impressive feats of engineering that were built by human hands, by people that had their own knowledge of materials and construction techniques. An aspect of interpretation of the earthworks that should be considered is the process of construction. The field most closely aligned with understanding the processes of construction for earthen structures is geotechnical engineering. Therefore, in the following article, I use an archeo-engineering perspective that utilizes concepts of geotechnical engineering to identify the human ingenuity behind the construction of ancient earthworks.

Page 2: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 2

Fig. 1. Map showing location of earthworks and mounds found in Ohio (red dots), and location of geometric earthworks in the Scioto Valley of Ohio that are mentioned in the article, note the Hopwell earthwork at center.

Case Study

The construction of earthworks in the Eastern Woodlands of North America has a great time depth (~14,000 years) and variety in expression of forms throughout time and geography. The term earthwork, used here, refers to any structure that was created by intentionally depositing layers of soil to modify the natural landscape. The following article focuses on one type of earthwork-- a geometric enclosure. These structures consisted of circular and rectangular designs of earthen embankments that were sinusoidal in cross section and occurred with and without ditches (Figure 1) (Byers 2004). The dimensions and slopes of the existing earthworks are more likely a product of erosion and recent agricultural modification. Interestingly, the Scioto Valley contains the highest number of geometric enclosures in the Eastern Woodlands.

The following analysis considers the Hopewell site earthwork enclosure, which dates to the Middle Woodland period (250 B.C. to A.D. 50). The earthworks site is located on the second terrace of the North Fork of the Paint Creek, at latitude 39.3614 and longitude -83.0897 (Figure 1). As the Hopewell site was considered a type site for the Hopewellian tradition, preservation of the site has left the enclosure largely intact. Although, only sections of the enclosures are visible today, segments of the wall that lie on the forth terrace are well preserved (Figure 2). The site consists of a large square enclosure made of four nearly perpendicular walls that enclose roughly 16 acres; attached to the square enclosure is a rounded enclosure that follows the contours of the third terrace and enclosures roughly 100 acres; enclosed within the rounded enclosure is a semicircular enclosure on a raised platform; and within each enclosure are located numerous burial mounds. The earliest recorded dimensions of the enclosure embankments indicate basal widths of 35 feet and heights of 30 feet, which would have resulted in slopes at a 60 degree angle or greater (Squire and Davis 1848).

Page 3: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 3

Fig. 2. Detail of the Hopewell site showing elevations and locations of the embankments as identified by Squire and Davis (1848), embankment between red arrows and located on the third terrace is well preserved.

Previous Research

Previous excavations at geometric enclosures have been limited to excavation of enclosed mounds, expect for the sites of Hopeton and Newark. Based on excavations at the Hopeton site, earthwork enclosures are assumed to be constructed of multiple soils layers (Lynott 2006). In which, the original topsoil is removed before construction and a thin black organic soil deposited, over which is layered yellow clay loam, red sandy clay, then more yellow clay loam, and a capping layer of brown topsoil. Alternatively, excavations at the Newark site located north-east of the Scioto Valley, revealed a unique construction pattern that entailed first building separate mounds constructed of layers of black, yellow, and brown soil and then filling in the spaces between mounds to create an embankment (Lepper 1998). Regardless of the exact layering of soil, Middle Woodland peoples were obtaining diverse soils from the landscape to create a multi-colored structure.

Drawing on the variation in soil color, Bernardini (2004) identifies the distances between potential sources for the red, yellow, and brown soil compared to each earthwork in the Scioto Valley. The goal of his article was to estimate the size of the labor force needed to construct each earthwork, largely based on resource procurement distance. From an engineering perspective additional factors that may affect labor estimates include soil friability (ease of excavation) and compaction effort (how soil was emplaced). Additionally, the strength properties of a given soil type greatly affect the size and shape of embankment that can be constructed. From a heuristic standpoint, yellow soil is more sand rich, red soil is more clay rich, and brown soil would be more organic rich. Variation in soil color, therefore,

Page 4: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 4

implies variation in a given soils chemical, sand, clay, and organic content, all of which affect soil strength.

Alternatively, O’Neal et al. (2005) estimates the soil diffusion constant for the embankment walls at the Hopewell site (k=0.0005 m2/yr) as a means to understand site change over time. The soil diffusion constant (k) is a factor that estimates the erosion rate that would result in the current sinusoidal shape of the walls. The calculation of the diffusion constant is based primarily on two geologic factors—sediment flux and slope of the soil (Formula 1, Kirby 1971). As calculation of these factors are typically used in geological application the calculations do not account for the initial stability of a given slope from an engineering calculation of strength of the soil (Formula 2, Pierce and Colman 1996): q=−k ( dh

dx ); dhdt

=−dqdx ; dh

dt=k d2h

dx2 (1)

where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope gradient; t is time.

k=¿¿ (2)

where is the initial scarp slope before erosion; is the soil friction angle; h is the height of scarp; t is time; ERF is the error function.

O’Neal et al. (2005) hypothesizes three types of slopes including triangular, trapezoidal, and sinusoidal. However, the hypothesized initial slopes may not have been stable after construction with the assumed clay loam soil used in their analysis. To explore the slope stability, the following analysis considers the shape of the initial slopes in addition to other factors that would have affected the construction of the earthen embankments (Table 1).

Table 1. Factors affecting soil strength1. initial slopes and height of embankments2. strength properties of soil used in construction3. compaction effort imparted on the soil during construction4. duration of construction5. stress history of the soil after construction6. mode of slope failure7. initial conditions of soil prior to aging over 2000 years

Analysis of Soil Strength

To begin to explore the structural properties of the Hopewell embankment walls, basic soil properties were determined from USDA-NRCS Soil Report and Johnston’s (1975) engineering characteristics of Ohio soils. Following the previous studies, soil color was determined from the mussel data provided by the soil survey and mapped in location to the earthwork (Figure 3). Importantly, the variation in soil color corresponds to variation in engineering classification of the soil (Figure 4); in particular the reddish brown soil corresponds with the A-6 classification, while all other brownish soils correspond to A-4 soils.

Page 5: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 5

Fig. 3. Map of soil color in proximity of the Hopewell embankments, brown and reddish brown soils make up the majority of soils on the second terrace, whereas yellowish brown and grey soils are found primarily on the third terrace.

Fig. 4. Map of soil properties in proximity of the Hopewell embankments, A-4 (green), A-6 (brown), A-2 (blue), water (white).

The stability of a slope is dependent on the resisting force being greater than the driving force. In the case of the earthwork embankments the frictional and cohesional properties of the soil provided the resistance that withstands the driving forces exerted by weight of the embankment. Frictional properties of the soil are dependent on the grain size distribution, particle shape, and void ratio. Whereas cohesional properties of the soil are dependent on the ionic attraction and chemical cementation between particles. The soils found within seven square miles of the Hopewell site can be generally classified as clayey silt (CL-ML), suggesting that the soil strength is dominated by the cohesive properties of the soil. Importantly, the activity of the soil is low suggesting limited shrink/swell properties of the soil (Figure 5).

Fig. 5 . Volume change tendencies for Hopewell soils, based on Van der Merwe (1964).

Page 6: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 6

Determining the strength properties of soil from soil classification properties produces variable results, but are necessary for initial design considerations. Often general formulas that account for many soils types have large standard deviation ranges (Table 2). Recent research on Ohio soils has produced correlations between soil strength properties and AASHTO classifications (Holko 2008). These correlations were then used to estimate the average shear strength and friction angle for the soils located in the vicinity of the Hopewell earthwork (Table 3, and Appendix).

Table 2. Correlation between soil strength properties and index properties.Soil Type Dependent Variable (y) Independent Variable

(x) Equation Reference

unknown Friction angle Plasticity Index y = 0.001x2 - 0.276x + 35.89 Terzaghi (1996)NC soil Friction angle Plasticity Index y = -6.59ln(x) + 50.61 Kenny (1959)Clay Undrained Shear Strength Liquidity Index y=e^(0.026-1.21x) Yilmaz (2000)Unkown Undrained Shear Strength California Bearing Ratio Y=x/0.62 Sukumaran (2000)NC soil Undrained Shear Strength Plasticity Index y=(0.11+0.003x)*() Das (1994)A-4, A6, A-7-6 Effective Friction Angle Plasticity Index y = (24.31x + 95.428)/x Holko (2008)A-4 Unconfined Comp. Strength Plasticity Index y = 6.7863x2 – 105.25x + 450.32 Holko (2008)A-6 Unconfined Comp. Strength % Silt & Dry Unit

Weighty= -1.7375 (%Silt) + 1.1892(DUW) – 32.4728

Holko (2008)

A-7-6 Unconfined Comp. Strength % Sand & Plastic Limit y= 0.8677 (%S) + 9.7743(PL) –154.2631

Holko (2008)

As Holko (2008) correlations were only for unconfined compressive strength, these values were converted to undrained shear strength by use of Das (1999) correlation. Equations based on the California Bearing capacity were not used due to a lack of correlation with the plasticity index, and Yimaz’s equations were not used due to uncertainties about liquidy index although values were similar to Das calculations. As would be expected values of shear strength and friction angle resulted in results typical of medium to stiff silty-clay (Coduto 2001:89)

Table 3. Soil strength properties calculated from Holko (2008) and averaged by soil color.Soil Color Activity (-) Effective Friction Angle (deg.) Undrained Shear Strength (kPa)

Yellow 0.2 39.3 62.1Brown 0.6 32.6 110.5Grey 0.6 31.6 140.4Red 0.4 34.9 49.8

Stability of Slopes

There are four possible modes of failure for embankment slopes (Figure 6). As translational (Type 4) failures occur on long slopes; only the toe, base, and slope failure will be considered in the following analysis. Additionally, the initial cross-sectional geometries of the embankments may determine the mode of failure; for example slopes over 53 degrees typically result in toe failure. In the case of the Hopewell embankments, three types of slopes have been hypothesized with geometries corresponding to previous analyses and historic records (Bernardini 2003; O’Neal et al. 2005; Squire and Davis 1848) (Figure 7). Unlike previous analyses the following evaluation of slope considers a 6 meter tall embankment. This taller slope height was calculated from a critical height analysis assuming a factor of safety of 2 for the lowest undrained shear strength soil (Berks channery silt loam) (Tersaghi and Peck 1996):

Page 7: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 7

H crtical=cu/(FS∗γ∗m) (3)where Hcritical is the height of the slope; cu is the undrained cohesion; FS is the factor of safety; is the moist unit weight; and m is a factor of slope.

Fig. 6. Types of embankment slope failure including(1) base failure, (2) toe failure, (3) slope failure , and (4) translational movement.

Fig. 7. Hypothesized shape of Hopewell earthworks, showing three hypothesized slope geometries

To evaluate the stability of the hypothesized original slopes of the Hopewell embankments, different geometric configurations, soil properties, and water level conditions were modeled using the UTESASED4 slope stability program. Analysis was conducted on the slope of the embankment and ditch using the simplified bishop method based on undrained shear strength and no friction angle. The underlying soil was assumed to be a Miamian silt loam soil which varies in strength with depth (Figure 7). Additionally, three water level conditions were considered, (1) open ditch with no water, (2) ditch filled with water, (3) no ditch.

Interestingly, all slope conditions modeled were found to be stable with a factor of safety greater than 2. Assuming that these results are based on soil properties that accurately reflect the natural soil conditions that Middle Woodland peoples could have collected, then choice of soils of different colors would not have greatly affected slope stability. The most critical soil color were reddish soils, which had the least variability in strength values and reflects roughly 5% of the soils in the area of the Hopewell site. The use of red soils in Middle Woodland earthworks is assumed to be limited to capping of slopes and lining of ditches (Lynott 2006) and therefore would act to limit erosional forces.

The most stable soil was greyish brown in color, which is interesting due to the potential of higher organic content in these soils. However, these soils are typically found in thin layers (just a few inches thick) at the base of an earthwork and may be evidence of burning prior to construction. Interestingly, layering soils with a capping of red soil, over a layer of yellow, then brown soil, over a thin layer of grey soil, produces a highly stable structure (nearly as stable as using only one soil color).

The most critical water condition occurred when there was no water in the ditch. As the ditches have been dry during recorded history, failure of slopes may have been triggered by fluctuating ground water levels that occurred around the end of the Middle Woodland period as evidenced by a decline in sea water levels

Page 8: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 8

The most critical slope geometry occurred when slopes were the heights (72 degrees) as illustrated by the trapezoidal cross section. The most stable geometry was the triangular geometry, which had the shallowest slopes (50 degrees) and smallest top width. The original shape of the earthworks then is a factor of top width. Leading to questions about the designers intentions and use of the site.

Table 4. Results of slope stability analysis, values indicates factor of safety for a given combination of soil, geometry, and water.

Color

Undrained Shear

Strength(kPa)

Moist Unit

Weight (kN/m3)

Trapezoidal Geometry(72 deg slope)

Sinusoidal Geometry (61 deg slope)

Triangular Geometry(50 deg slope)

Ditch without water

Ditch with

water

No Ditch

Ditch without water

Ditch with wate

r

No Ditch

Ditch without water

Ditch with

water

No Ditch

Red 49.8 14.7 2.0 2.2 2.8 2.5 2.7 3.2 3.2 3.5 3.7Yellow 62.1 14.2 2.7 2.5 3.5 2.7 2.9 3.9 3.5 3.7 4.4Brown 110.5 13.6 3.1 3.8 4.6 3.7 5.4 4.9 4.8 4.8 5.5Grey 140.4 14.7 3.1 3.8 4.7 4.1 5.2 4.8 4.8 6.4 5.4Layered (49.8+16.54(d)) 14.2 3.1 3.7 4.6 3.6 3.8 4.9 4.7 4.9 5.5

Consideration of slope failureAs a diversity of slope geometries, soil conditions, and water levels were found to be sable

with embankment heights that were historically described (6 meters), the question then turns to what type of slope would produce the current sinusoidal geometry. The above modeled shear surface geometries can then be compared to current conditions of shear failure surfaces to better understand the forces that caused the slope degradation (Figure 8). The condition that most closely matches the current slope failure is a shallow slope (<50 degrees) that failed due to in situ base strength of the embankment which triggered a slope failure of the ditch. This pattern of failure suggests that the constructed earthwork was stable but that the strength of underlying soil layers that were naturally deposited were the determining factor of earthwork stability.

Fig. 8. GPR data from transect of the Hopewell embankment wall located on the third terrace. Note that points A and B indicate disturbance features (probable slope failure surface) and point C indicates water table (adapted from O’Neal et al. 2005)..

Page 9: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 9

Fig. 9. Failure surface for a triangular sloped embankment with a water filled ditch, illustrating base failure of the embankment which lead to slope failure of the ditch.

Recalculation of diffusivity

As the effective friction angle is estimated to be at most 40 degrees, the recalculation of the diffusivity (k) using the formula that accounts for internal friction (Formula 2) reveals and interesting solution. As would be expected from stability of slopes analysis, the shallow slopes of the sinusoidal embankment has a high diffusivity that requires a lower erosion rate (as predicated by the O’Neal et al. 2005). However, the steep slopes of the trapezoidal embankment have a low diffusivity that requires a higher erosion rate than was previously predicted, which could be explained by slope instability closer to the time of construction (Table 6). Therefore, to better understand the mechanics of slope change over the roughly 2000 year history of the embankments, the initial stability of the embankments should be considered.

Table 6. Comparison of diffusivity calculated from Formula 1 (k1) and Formula 2 (k2).Variables Triangular Trapezoid Sinusoidal Unitsh height 2.3 2.3 2.3 meters friction angle 40 40 40 degrees initial slope 29 72 24 degreest time 1800 1800 1800 years

k1 Formula 1 0.0005 0.0005 0.0005 m2/yrk2 Formula 2 0.0005 0.0000 0.0009 m2/yr

Conclusion The current cross sectional geometry of the Hopewell site embankment is a product of both

slope stability and erosional processes, however these impressive embankments are not natural features of the landscape and should be evaluated as engineered structures. From this perspective, Middle Woodland peoples had access to a diversity of soils that could have been used to construct a variety of cross sectional geometries.

However, the above analysis suggests that the characteristics of the underlying soil in which the embankments were built on would have been a major factor for slope stability, in which

Page 10: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 10

variations in the water table could have lead to the current sinusoidal shapes of the embankments. A similar pattern of slope stability issues has been identified in the Overton Down experimental earthwork, in which the greatest effect on degradation of the embankment was due to settlement of the underlying soil layers (Crowther et al. 1996). However, in the Overton Down case the upper meter of humic soil collapsed under the load of the earthwork and in the Hopewell case the shear strength of the underlying soil lead to failure as the upper organic soil layers are typically removed before construction. Clearly a more detailed analysis of the soil properties both in the embankment and underlying the embankment is need to explore the slope stability (my dissertation will explore this ).

ReferencesAtwater, C. (1820). “Description of the antiquities discovered in the State of Ohio and other

western states”. American Antiquity Society. Worcester, Mass. Transactions and Collections: 105-237.

Bell, M., Fowler, P.J., & Hillson, S.W. (1996). The experimental earthwork project 1960–1992. Research Report 100. York: Council for British Archaeology.

Bernardini, W. (2004).Hopewell geometric earthworks: a case study in the referential and experiential meaning of monuments. Journal of Anthropological Archaeology 23(3):331-356.

Buikstra JE, Charles DK, and Rakita GFM. (1998). “A Comparative Perspective on Illinois Valley Hopewell Structures, Images, Colors, and Cosmology.” Staging Ritual: Hopewell Ceremonialism at the Mound House Site, Greene County, Illinois, JE Buikstra, DK Charles and GFM Rakiata, eds, Center for American Archaeology, Kampsville, 77-95.

Byers, Martin. (2004). The Ohio Hopewell Episode: Paradigm Lost and Paradigm Gained: The University of Akron Press.

Carr, C., and Case, D.T. (2005). Gathering Hopewell: Society, Ritual, and Ritual Interaction: Springer Link.

Case, D. T., and Carr, C. (2008). The Scioto Hopewell and Their Neighbors: Bioarchaeological Documentation and Cultural Understanding: Springer.

Coduto, Donald P. (2001). Foundation Design: Principles and practices. Upper Saddle River, New Jersey: Prentice Hall.

Crowther, J., Macphail, R.I., and Cruise, G.M. 1996 Short term, post-burial change in a humic rendzina soil, Overton Down experimental earthwork, Wilshire, England. Geoarchaeology: An International Journal, 11(2):95-117.

Das, Braja M. (1999). Fundamentals of geotechnical engineering: Brooks/Cole.Holko, J.M. (2008). Shear strength correlations for Ohio highway embankment soils.

Dissertation: Russ College of Engineering and Technology of Ohio University. Jiang, J-C., and Yamajami, T. (2007). A new back anlaysis of strength parameters from single

slips. Computers and Geotechnics. 35.2-286-291.Jiang, L. and Katsutada O. (2004). Geotechnical research on Jiangnan Tu-Dun tomb historical

remains in China. Journal of Zhejiang University Science. 5(3), 303–308.Johnston, G.O. (1975). Engineering characteristics of Ohio soil series. Principles of engineering

soils taxonomy. Ohio department of transportation.Kirby, M.J. (1971). Hillslope process-response models based on the continuity equation. Inst. Br.

Geogr. Spec. Publ., 3:15-30.

Page 11: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 11

Kolb, M. J. (1994) Monumentality and the Rise of Religious Authority in Precontact Hawai'i. Current Anthropology 35(5):521-547.

Lepper, B.T. (1998). “The Archaeology of the Newark Earthworks of the Eastern Woodlands.” Mainfort R.C., and Sullivan L.P., eds. Ancient Earthen Enclosures. Gainsville: University Press of Florida.

Lynott, M. (2006). Geoarchaeological study of an Ohio Hopewell Earthwork. Society for American Archaeology. Philadelphia Annual Meeting.

Nielsen, A. E. (1995). Architectural Performance and the Reproduction of Social Power. Expanding Archaeology. University of Utah Press, Salt Lake City.

O’Neal M, O’Mansky M, and MacGregor A. (2005). “Modeling the Natural Degradation of Earthworks”. Geoarchaeology: An international Journal. 20.7: 739-748.

Pierce,K.L. and Colman, S.M. (1996). Effect of height and orientation on geomorphic degration rates and processes, late glacial terrace scaprs in Central Idaho. Geological Society of American Bulliten. 97:869-885.

Squier, E.G., and Davis, E.H. (1848 [1998]). Ancient Monuments of the Mississippi Valley: Comprising the Results of Extensive Original Surveys and Explorations. Washington, D.C.: Smithsonian Institution Press.

Van Der Merwe (1964) The prediction of heave from the plasticity index and percentage clay fraction of soils, Trans. S. Afr. Inst. Civ. Eng. 6: 103–107.

Terzaghi and Peck. (1996). Soil mechanics in engineering practice. John Wiley &Sons.Triger, B. (1990) Monumental Architecture: A Thermodynamic Explanation of Symbolic

Behaviour. World Archaeology 22(2):119-132.Yilmaz, I. (2000). Evaluation of shear strength of clayey soils by using their liquidity index.

Buliten of Engineering Geology and Environment. 59:227-229.

Page 12: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 12

Appendix

Table 1. Area of soils within 7 square miles of the Hopewell site used for weighted averages.

Table 2. Weighted average soil properties based on soil color as reported by Johnston (1975).

Color Series Name  AASHTO LL (%)

PI (%)

Optimum Moisture

(%)

Max Dry Unit

Weight (kN/m3)

Moist Unit

Weight (kN/m3)

Yellow

Be, Cw, Me, Rp, Th, Av, Cg, Gg, Gn, Mh, Sh

Berks, Cruze, Mentor,Rossmoyne, Thrifton, Avonburg,Celina, Gilpin, Glenford,Miamian, Shelocta

A-4,A-6, A-7-6 33 7 17 17.0 13.3

BrownCa, Ge, Nn, Rd, Ro, Sw, Cp, Ka

Cana, Gessie, Nineveh,Rodman, Rossburg, Stonelick,Clifty, Kendallville

A-4, A-6,A-7-6, 30 9 19 16.3 12.6

Grey Pc, Kp, Cv, Wk

Patton, Kokomo, Crosby,Westland

A-4, A-6,A-7-5, A-7-6 43 16 20 15.8 13.9

Red Ee Eldean A-4 29 9 15 17.3 13.7

Series Name Acres in AOI Percent of AOIAv Avonburg 0.30 0.0%Be Berks 20.80 0.4%Ca Cana 173.70 3.4%Cg Celina 242.10 4.8%Cp Clifty 25.20 0.5%Cv Crosby 221.30 4.4%Cw Cruze 40.10 0.8%Ee Eldean 854.40 17.0%Ge Gessie 469.30 9.3%Gg Gilpin 0.00 0.0%Gn Glenford 51.60 1.0%Ka Kendallville 391.20 7.8%Kp Kokomo 66.10 1.3%Me Mentor 2.50 0.0%Mh Miamian 1269.30 25.2%Nn Nineveh 33.90 0.7%Pc Patton 72.30 1.4%Rd Rodman 71.60 1.4%Ro Rossburg 29.20 0.6%Rp Rossmoyne 38.00 0.8%Sh Shelocta 604.30 12.0%Sw Stonelick 77.20 1.5%Th Thrifton 48.40 1.0%Wk Westland 232.30 4.6%

Page 13: aeevans1/EarthworkReconstruction... · Web viewq=-k dh dx ; dh dt =- dq dx ; dh dt =k d 2 h dx 2 (1)where k is the diffusivity constant; q is the sediment flux; dh/dx is the slope

Evans-Busch Slope Stability Analysis of a 2,000 Year Old Earthwork 13

Fig. 1. Grain size distribution curve for Hopewell soils based on soil color.

Table 3. Variability in strength parameters from various correlations

ColorOpt

Moisture (%)

Max Dry Unit

Weight (kN/m^3)

Moist Unit

Weight (kN/m^3

)

L I (%) CBR

Effective Friction Angle

(degrees)

Unconfined Compressiv

eStrength

(kPa)

Undrained shear

Strength (kPa)

Undrained shear

Strength (kPa)

Undrained shear

strength (kPa)

Holko (2008) Holko (2008) Yilmaz

(2000)Das

(1999)Sukumaran

(2000)Yellow 17 17.0 14.2 1.4 8 39.3 466.6 31.1 62.1 87Brown 19 16.3 13.6 0.4 5 32.6 792.1 56.6 110.5 54Grey 20 15.8 14.7 0.5 4 31.6 868.0 56.0 140.4 48Red 15 17.3 14.7 0.6 9 34.9 363.7 51.4 49.8 100