Download - Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Transcript
Page 1: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

AAcceleration andEntanglement:

a Deteriorating Relationship

R.B. Mann

Phys. Rev. Lett. 95 120404 (2005)

Phys. Rev. A74 032326 (2006)

Phys. Rev. A79 042333 (2009)

Phys. Rev. A80 02230 (2009)

D. AhnP. Alsing

I. Fuentes-SchullerF. HaqueB.L. HuS Y Lin

N. MenicucciD. OstapchukG. SaltonT. TessierV. Villalba

Page 2: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

ψ = α 0 + β 1

QQubitsTThe Simplest Quantum Systems

Photon Polarization

Linear

α 2 + β 2 = 1

Bloch Sphere

= α + β

Circular

Page 3: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

EEntanglementAlice Bob

Image copyright © Anton Zeilinger, Institute of

Experimental Physics, University of Vienna.Resource for information tasks:

teleportation,cyptography, etc.

Page 4: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Local Operations andClassical Communication

Separable state:

φAB

= φ1

A ⊗ ψ2

B

Cannot be prepared by LOCC

Maximal correlations whenmeasured in any basis

Entangled state:Defined as non-separable

φAB

=1

20

1

A0

2

B + 11

A1

2

B( )

Describing Entanglement

Page 5: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Entangled state:

α 01

A0

2

B + β 11

A1

2

B ⇒ ρ =

α 20 0 αβ *

0 0 0 0

0 0 0 0

α *β 0 0 β 2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

DDensity MatrixQuantum State ψ ⇒ ψ ψ ≡ ρ Density Matrix

Pure State: α 0 + β 1 ⇒ ρ =α 2 αβ *

α *β β 2

⎝⎜

⎠⎟

ψ A ψ = Tr ρA[ ]Expectation Value:

Tr ρ2⎡⎣ ⎤⎦ = 1

Tr ρ2⎡⎣ ⎤⎦ < 1Mixed State:

Page 6: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

QQuantifying Entanglement

Entropy no longer quantifies entanglement….

Schmidt decomposition

For pure states:

φAB

= ω ij i 1

Aj

2

B( )ij

∑ φAB

= ωn n 1

An

2

B( )n

Measure of entanglement: von-Neumann entropy

ρAB = φ φ S ρAB( ) = 0S ρ( ) = −Tr ρ log2 ρ[ ]Reduce

ρA = −TrB ρAB[ ] S ρA( ) = S ρB( )

No analogous Schmidtdecomposition

Problem: mixed states

ρAB = ω ijkl i j k l( )ijkl∑

Page 7: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

MMixed State Entanglement

Necessary separability condition:

The partial transpose of the density matrix haspositive eigenvalues if the state is separable.

Separable state:

Mutual information

Total correlations quantum + classical

I ρAB( ) = S ρA( ) + S ρB( ) − S ρAB( )

To determine separability is easy

To measure entanglement is not

ρAB = α ijρAi ⊗ ρB

j

i∑

Page 8: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Measuring Entanglement

Logarithmic negativity N ρ( ) = log2 ρT

ED ≤ EF ≤ N Upper bound on all

entanglement!

EF = limcopies → ∞

# of maximally entangled pairs

# of pure state copies created

Entanglementof Formation

ED = lim#states → ∞

# of non-maximally entangled states

# of maximally entangled states

Entanglementof Distillation

Page 9: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

What happens if Bob moveswith respect to Alice?

RRelativistic Entanglement

Peres,Scudo and Terno

Alsing and Milburn

Gingrich and Adami

Pachos and Solano

Inertial Frames:• Entanglement constant between inertiallymoving parties• Some degrees of freedom can be transferredto others

Our motivation: Study entanglement in this setting

Alsing and Milburn, PRL 91 180404, (2003)Non-inertial frames: Teleportation with a uniformly accelerated partner• teleportation fidelity decreases as the acceleration grows• Indication of entanglement degradation.

Page 10: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

BBosonic EEntanglement forUUniformly Accelerated Observers

Photon 1 Photon 2

Alice Bob

Photon 1

φAB

=1

20

1

A0

2

B + 11

A1

2

B( )

φAB

= ?

Photon 2

Fuentes-Schuller/Mann

Phys. Rev. Lett. 95:120404 (2005)

Rob

Page 11: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Minkowski space

ds2 = dt 2 − dr2

r > t

t = a−1eaξ sinh aη( )r = a−1eaξ cosh aη( )

r < − t

t = −a−1eaξ sinh aη( )r = −a−1eaξ cosh aη( )

The quantization of fields indifferent coordinates is different!

t = a−1 sinh aτ( )r = a−1 cosh aτ( )

Rindler space

ds2 = e2aξ dη2 − dξ 2( )

Page 12: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

The acceleratedRob

Photon 2

Unruh effect!

Rob is causally disconnectedfrom region II

cosh r =1

1 − exp −2πΩ( )

Ω =ωca

02

B0

2

B =1

cosh rtanhn r

n= 0

∑ nIn

II

The inertial Bob

Page 13: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

02

B =1

cosh rtanhn r

n= 0

∑ nIn

II

Trace over region II

12

B =1

cosh rtanhn r

n= 0

∑ n + 1 n + 1In

II

nm = nAm

I

Page 14: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Always entangled forfinite acceleration!

How much entanglement?

Logarithmic negativity vs.acceleration parameter r

Entanglement?Check eigenvalues of positive partial transpose

λ±n =

tanh2n r

4 cosh2 r

n

sinh2 r+ tanh2 r

⎛⎝⎜

⎞⎠⎟

± Zn

⎡⎣⎢

⎤⎦⎥

Zn =n

sinh2 r+ tanh2 r

⎛⎝⎜

⎞⎠⎟

2

+4

cosh2 r

λ−n < 0

Distillable entanglement decreases

as acceleration increases

Mutual information vs cosh(r)

IAR = S ρA( ) + S ρR( ) − S ρAR( )

N ρ( ) = log2 ρT

Page 15: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Where did the entanglement go?

Finite accelerationthe entanglement between Alice+Rob is degradedand entanglement with region II grows

Purestate: S ρARI , II( ) = 0

Entanglement between Alice+Rob in region IWith modes in region II

S ρARI( ) = S ρRII( )

Zero accelerationAlice+Bob are maximallyentangled and there is noentanglement with region II

S ρARI( ) = 0

Alice+Rob are disentangledand entanglement withregion II is maximal

Infinite acceleration

S ρARI( ) = 1

Page 16: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

FFermionic EEntanglement forUUniformly Accelerated Observers

Electron 1 Electron 2

Alice Bob

Electron 1

ψAB

=1

20

1

A0

2

B + 11

A1

2

B( )

ψAB

= ?

Electron 2

Alsing/Mann/Fuentes-Schuller/Tessier

Phys. Rev. A74 032326 (2006)

Rob

Page 17: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

The acceleratedRob

Electron 2

cosr =1

1 + exp −2πΩ( ) Ω =

ωca

02

B0

2

B = cosr 0I

0II

+ sin r 1I

1II

The inertial Bob

Fermionic vacuum!

N = log2 1 + cos2 r⎡⎣ ⎤⎦

Negativity

EF = −1 + sin r

2log2

1 + sin r

2⎡⎣⎢

⎤⎦⎥

−1 − sin r

2log2

1 − sin r

2⎡⎣⎢

⎤⎦⎥

Entanglementof Formation

Page 18: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

� �

Alice and Rob-I

Alice and anti-Rob-II

Rob-I and anti-Rob-II

Page 19: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

IInfinite Acceleration LimitBosons� Entanglement

� goes to zero

� Mutual information� goes to 1

� State� maximally entangled to

region II

The state is only

classically

correlated

The state always has

some quantum

correlation

Fermions� Entanglement

� goes to

� Mutual information� goes to 1

� State� maximally entangled to

region II

1 2

Page 20: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

How Robust is thisDifference?

� Does the number of excited modes matter?� No for fermions -- entanglement degradation is

still limited for fermions

� Yes for bosons -- entanglement loss depends onthe number of modes occupied

� Does the surviving entanglement depend onthe choice of maximally entangled state?� No

� Does spin matter?� Yes, but only quantitatively -- entanglement

degradation is greater but still does not vanish inthe large acceleration limit

Leon/Martin-Martinez

Phys.Rev. A81 032320

Leon/Martin-Martinez

1003.3550

Leon/Martin-Martinez

Phys.Rev. A80 012314

Page 21: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

NNon-Uniform Acceleration

II

I

Costa Rev.Bras.Fis. 17 (1987) 585

Percocca/Villalba CQG 9 (1992) 307

No Timelike

Killing Vector!

a T ,X0( ) =ae2aX0

e−2aT + e2aX0⎡⎣ ⎤⎦3/2

Page 22: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Electron 1 Electron 2

Alice Bob

Electron 1

ψAB

=1

20

1

A0

2

B + 11

A1

2

B( )

ψAB

= ?

Electron 2

Rob

Bob

Page 23: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Possible Scenario

Let Vic define +ve/-ve frequency on a constant time-slice

KG eqn

Separate variables and solve

Mann/Villalba

Phys. Rev. A80 02230 (2009)

T=const

ν = Kw

Page 24: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Photon 2

02

B

The inertial Bob

Bob --> Rob

0k 2

B = 1 − q2

qn

n= 0

∑ nk Ink II

q =e− πνcν +

* T0( ) − cν −* T0( )

cν + T0( ) + e− πνcν − T0( )ρ =

1 − q2

2q2n

n∑ ρn

ρn = 0n 0n + 1 − q2n + 1 0n 1 n + 1

+ 1 − q2n + 1 1 n + 1 0n + 1 − q

2( ) n + 1( ) 1 n + 1 1 n + 1

Page 25: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

NK = 0.3, w = 1

K = 0.1, w = 1

K = 0.3, w = 5

K = 0.1, w = 5

N = log2

1 − q2

2+

q2n

41 − q

2( ) Znn= 0

∑⎛

⎝⎜

⎠⎟

Zn =n q

2

1 − q2

+ q2

⎝⎜⎜

⎠⎟⎟

2

+ 4 1 − q2( )

ν = Kw

I

K = 0.1, w = 1

K = 0.3, w = 1

K = 0.3, w = 5

K = 0.1, w = 5

Dn = 1 +n 1 − q

2( )q

2

⎝⎜⎜

⎠⎟⎟

log2 1 +n 1 − q

2( )q

2

⎝⎜⎜

⎠⎟⎟

− 1 + n + 1( ) 1 − q2( )( ) log2 1 + n + 1( ) 1 − q

2( )( )

I = 1 −1

2log2 q

2( ) +1 − q

2

2q

2nDn

n= 0

Page 26: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Generating EntanglementHan/Olson/Dowling

Phys. Rev. A78 022302 (2008)

Mann/Ostapchuk

Phys. Rev. A79 042333 (2009)

Measurements of an accelerated

observer generate entanglement!

0M + = N exp tan r( )ckI †dk

II †( )k

∏ 0k I

+0k II

0M − = N exp − tan r( )dkI †ck

II †( )k

∏ 0k I

−0k II

+

Minkowski particle vacuum

Minkowski antiparticle vacuum

Fermions

Project onto a single particle mode

k in region I

ψ + k( ) = PkI 0

M + = sin r + cosr ak†bk

†⎡⎣ ⎤⎦ 0M +

Bogoliubov tmf

M ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

S = log2 csc2 r( ) + cos2 r log2 tan2 r( )Trace over antiparticle states:

Page 27: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Detector ResponsesCan entanglement be used to distinguish curvature effects

from Minkowski-space heating?

ΩHI τ( ) = η τ( )φ x τ( )( ) eiΩτ σ + + e− iΩτ σ −( )

detector

worldlinecoupling

�φ +

1

6Rφ = 0

Gibbons/Hawking

Phys. Rev. D15 2738 (1977)

A single detector can’t

distinguish these 2

possibilities

ρ = A 1 1 + 1 − A( ) 0 0

D+ x, ′x( ) = φ τ( )φ ′τ( ) = −T 2

4 sinh2 πT t − ′t − iε( )( )

A = dτ−∞

∫ d ′τ−∞

∫ η τ( )η ′τ( )e− iΩ τ − ′τ( )D+ x, ′x( )

Compare:

• Minkowski space at finite temperature T

• de Sitter space with expansion rate κ=2πT ds

2 = −dt 2 + d�xid

�x

ds2 = −dt 2 + e−2κ td

�xid

�x

What about

2 detectors?

Page 28: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Menicucci/Ver Steeg

Phys. Rev. D79 042007 (2009)

N = max X − A,0( )

X = −2 dτd ′τ′τ <τ

∫ η τ( )η ′τ( )e− iΩ τ + ′τ( )D+ x, ′x( )

amplitude detector clicks

amplitude for virtual particle exchange

Negativity

x = t + ′ty = t − ′t − iε

DMink+ x, ′x( ) = −

T

8πLcoth πT L − y( )( )⎡⎣

+ coth πT L − y( )( )⎤⎦

DdS+ x, ′x( ) = −

T

4π 2

sinh2 πTy( )π 2T 2

− e2πTxL2⎛⎝⎜

⎞⎠⎟

−1

Page 29: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Now compare 2 uniformly accelerated detectorsMann/Menicucci/Salton

Page 30: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

������������ ����������������� ���� ������ ����������� ��������������� �

�������

��� ����

��������� �

Same acceleration

Page 31: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Opposite acceleration

same

acceleration

opposite

acceleration

Page 32: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Alice and Rob each have a detector that couples to a scalar field

Driven Damped Harmonic Oscillator

Frequency ΩDamping Coefficient ∼ λ2

0

Iterate over retarded mutual influences in powers of λ0

Compute Correlation Matrix V = RμRν = AB RμRν AB + 0 RμRν 0

detectors vacuumRμ = QA ,PA ,QB ,PB{ }

Σ = det VPT + i�2

M⎛⎝⎜

⎞⎠⎟

Entanglement

< 0

Hu/Haque/Lin/Mann/Ostapchuk

V PT = ΛVΛ

Λ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎜⎜⎜⎜

⎟⎟⎟⎟

M =

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎜⎜⎜⎜

⎟⎟⎟⎟

Page 33: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Σ = det VPT + i

�2

M⎛⎝⎜

⎞⎠⎟

a = 1

Page 34: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Σ = det VPT + i

�2

M⎛⎝⎜

⎞⎠⎟

a = 0.1

Page 35: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Better Regulator

Σ = det VPT + i�2

M⎛⎝⎜

⎞⎠⎟

Page 36: Acceleration and Entanglement: a Deteriorating Relationshipncts.ncku.edu.tw/phys/qis/100528/files/100529RB_Mann.pdf · Local Operations and Classical Communication Separable state:

Summary� Entanglement is an observer/detector dependent

phenomenon

� As acceleration increases� Entanglement goes to

� zero (bosons)

� finite (fermions)

� Mutual information goes to unity

� Entanglement with region II gets larger

� As observer increases acceleration� Entanglement decreases with time

� Maximum change takes place when change inacceleration is maximal