Entanglement assisted metrology and sensing...Eugene Polzik Niels Bohr Institute Copenhagen...

40
Eugene Polzik Niels Bohr Institute Copenhagen University Entanglement assisted metrology and sensing Entangled atom clock sub-femtoTesla magnetometry

Transcript of Entanglement assisted metrology and sensing...Eugene Polzik Niels Bohr Institute Copenhagen...

  • Eugene PolzikNiels Bohr Institute

    Copenhagen University

    Entanglement assisted metrology and sensing

    Entangled atom clock sub-femtoTesla magnetometry

  • Canonical quantum variables for light X,P – can be well measured by homodyne detection or by polarization rotation

    [ ] iPXaaPaaX i =−=+= ++ ˆ,ˆ)ˆˆ(ˆ),ˆˆ(ˆ22

    1

    1/ 2X Pδ δ ≥

    X X or P Pδ δ± ±measure

    P̂2 2 1/ 2X Pδ δ= =

    Coherent state (or vacuum)

    All states inthis talk have Gaussian

    Wigner functions

    -5

    0

    5

    -5

    0

    5

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    2 1/ 2Xδ <Squeezed state

    2 21 2 1 2( ) ( ) 2X X P Pδ δ− + + <

    Two-mode squeezed (EPR)

  • -450 450

    PolarizingBeamsplitter 450/-450

    Measurement of canonical variables via Stokes operators - polarization

    ˆ ˆ,X P

    12 2

    ˆ ˆS nX=

    S2 measurement

    Strongclassical

    light

    Quantum field

  • Ensemble of N polarized atoms = a giant spin“spin up”

    “spin down”Jx

    2ˆ ˆ ˆ ˆ, ,

    ˆ ˆ ˆ ˆ/ , /

    iy z x

    y x z x

    J J iJ N X P i

    X J J P J J

    ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

    = =

    Jy~P

    Jz~X

    Uncorrelated atoms:

    ( ) ( ) 14z yVar J Var J N= =Projection noise

  • Quantum noise of the initial state of atoms

    Quantum measurement changesthe state: back action noise of the meter (light)

    The meter (light) has its own quantum noisewhich adds to the measurement error

  • arXiv:0907.2453W. Wasilewski, K. Jensen, H. Krauter, J.J. Renema, M. V. Balabas, E.S. Po

    http://xxx.lanl.gov/abs/0907.2453http://xxx.lanl.gov/find/quant-ph/1/au:+Wasilewski_W/0/1/0/all/0/1http://xxx.lanl.gov/find/quant-ph/1/au:+Jensen_K/0/1/0/all/0/1http://xxx.lanl.gov/find/quant-ph/1/au:+Krauter_H/0/1/0/all/0/1http://xxx.lanl.gov/find/quant-ph/1/au:+Renema_J/0/1/0/all/0/1http://xxx.lanl.gov/find/quant-ph/1/au:+Balabas_M/0/1/0/all/0/1http://xxx.lanl.gov/find/quant-ph/1/au:+Polzik_E/0/1/0/all/0/1

  • BBias magnetic fieldLarmor frequency Ω

    cos( )RFB b t= Ω

    Detection of tiny oscillating magnetic fieldsSpin dynamics

    top view

    2RF AJ B N Tγ⊥ ≈

    2Tγ −−

    Gyromagnetic constant

    Transverse spin coherence time

    Minimal quantum noiseof uncorrelated spins

    AJ Nδ ⊥ =

  • Atomic levels and geometry of experiment

    B

    cosRF RF LB b t= Ω

    BRF

    2RFb Tϕ γ=

    Cesium ground state

    mF =4mF =3

  • Room Temperature Spins1012 atomsCesium

    2/36P

    2/16S432

    99.5% opticalpumping

    Harmonic oscillatorin the ground state

    320kHzΩ =

    1GHzΔ ≈

    Alkene-basedcoating. T2 = 40msecPerspectively up to

    many seconds

  • 0,8

    1,0

    1,2

    1,4

    1,6

    1,8

    2,0

    2,2

    2,4 Atomic Quantum Noise

    Ato

    mic

    noi

    se p

    ower

    [arb

    . uni

    ts]

    3

    3

    ˆ cos

    ˆ sin

    inz x

    iny x

    J J S t

    J J S t

    α

    α

    = Ω

    = Ω

    2 2ˆ ˆ ˆo u t in L a b

    zS S Jα= +

    Ĵ yz2

    ˆ ( )S t1S

    Atomic magnetometer – simplified quantum theory

    BRF=B0 cos(Ωt) 2/16S 320kHzΩ =

  • Quantum back action of probe light on atoms:calcellation via entanglement of two ensembles

    LΩmF =4mF =3

    L−ΩmF =3mF =-4

  • Calcellation of measurement back action with two cells

    1 2 1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ, (z z y y x xJ J J J i J J⎡ ⎤ ) 0+ + = + =⎣ ⎦

    measurement doesnot change relativespin orientation

    RF

    Faraday rotation signal doubles

    RF

  • † † †ˆ ˆˆ ˆ . .H a b ab h cχ χ= + +

    a

    bmF = F F-1 F-2 F-3

    1 2

    Double Λ”butterfly”

    2 2

    1

    14aa

    ξ =Tensor polarizability

    Vector polarizability

    Off-resonant interactionfor realistic atoms and polarized light

    2ˆ ˆ ˆ ˆ( )L A L Ak P P X Xξ= +

    Quantum Nondemolition Interaction limit ↔ tensor term→0:1. For spin ½2. For alkali atoms, if Δ >> HF of excited state and the

    interaction time is not too long

  • Atom

    s IN

    Ideal read out of the atomic state:atom-light state swap plus squeezing of the probe light

    1

    1

    out in out inA L A Lout in out inL A L A

    X P P X

    X P P X

    ξ ξ

    ξ ξ

    = =

    = =

    W. Wasilewski et al, Optics Express 17, 14444-14457 (2009)

    Photon

    s IN

    AtomsOUT

    PhotonsOUT

    † † †ˆ ˆˆ ˆ . .H a b ab h cχ χ= + +1 2

    2ˆ ˆ ˆ ˆ( )L A L Ak P P X Xξ= +

  • Cs probe detuning 850nmDepends only on detuning for

    a given transition

    Optimized temporal modes for the swap operation

    Swap of state from atoms to light providesthe best quantum measurement of atomic state

    21 1 1 12cos 2cos 1 2

    ˆ ˆ ˆ ˆ1 ( )swap swapt tout in y yNFS S e e J Jγ γ

    ξ− −

    Φ Φ= + − +

    Projection noiselimited

    Entanglementassisted

    6ξ =

  • Magnetic field sensitivity with 1.5*1012 atoms

    150.42 10 /T Hz−⋅

    State-of-the-art cell magnetometer with 1016 K atomsLee at al, Appl. Phys.Lett. 2006

    150.24 10 /T Hz−⋅

    100-fold improvementin sensitivity per atom

    15 1036 10 3.6 10RFB Tesla G− −= ⋅ = ⋅

  • 1012 spins in each ensemble

    y z

    x

    y z

    xSpins which are “more parallel” than that

    are entangled

    Entanglement of two

    macroscopic objects.

    21

    ~ −N

    B. Julsgaard, A. Kozhekin and EP, Nature, 413, 400 (2001)

    ( ) ( )1 2 1 2ˆ ˆ ˆ ˆ/ 2 / 2 1z z x y y xVar J J J Var J J J+ + + <Can be created by a measurement

  • Magnetometry beyond the projection noise limit

    Entanglingpulse

    RF field Measuringpulse

    ( ) ( )2 21 2 1 2ˆ ˆ ˆ ˆ 1.3 2z z y y x xJ J J J J Jδ δ+ + + = ⋅ < ⋅

    Entanglement by QND measurement

    2ms

    ( ) ( )2 21 2 1 2ˆ ˆ ˆ ˆ 1.3 2X X P Pδ δ+ + + =

  • EPR entanglementSignal/noise times

    bandwidthτ

  • Thomas Fernholz

    Hanna Krauter

    Kasper Jensen

    Lars Madsen

    WojtekWasilewski

  • Frequency of atomictransition as

    • standard of time

    2

    1

    ω12

    Appel et al, PNAS – Proceedings of the National Academy of Science (2009)106:10960-10965

  • Two level atom of a clock as a quasi-spin

    F=4mF =0

    ( )( )

    14 ,4 3,32

    14 32

    ˆ ˆzJ N

    N N

    ρ ρ= −

    = −

    Measurable atomic operator

    F=3mF =0

    Jx

    2ˆ ˆ, iy z xJ J iJ N⎡ ⎤ = =⎣ ⎦

    Jy~P

    Jz~X

    Uncorrelated atoms:

    ( ) ( ) 14z yVar J Var J N= =Projection noise

    ω12 = 9,192,631,770 Hz

  • Ramsey method – a way to determine ω12

    020

    Ti td E e tωπ δ= ∫

    2

    1

    ω12

    π/2 pulseπ/2 pulse

    12( )tω ω θ− =0

    02

    Ti td E e tωπ δ= ∫

    θRamsey fringes

    2N

    N2

    N1

  • Jx

    δJ2z = ½N <

    0Jz

    Measurement of the populationdifference

    2 12( )zJ Nδ =

    Coherent spin state:PROJECTION NOISE

    ( )12

    2 1NN

    NΨ = + N independent atoms

    Spin squeezed state

    ( )2 1 NΨ ≠ +

  • Metrologically relevant spin squeezing = entanglement

    Angular uncertainty ofthe spin defines

    metrological significanceWineland et al 1992

    Uncorrelated atoms(coherent spin state)

    Entangled atoms

    1/ 2

    1 12 4( )z x

    NVar J J Nδϕ −=

    = =( ) ( )

    1

    2 214

    ( )

    ( ) / /z x x x

    Var N

    Var J J N N J J

    ϕ −<

    ′ ′< =

    Entangled state cannot be writtenas a product of individual atom states

    ( )...2 ...1 ... ...1 ...2 ...i k i k+∼

    Z

  • Atomic clock with spin squeezed atoms

  • Quantum Nondemolition Measurement (QND) and Spin Squeezing

    An ideal QND measurement

    1. Conserves one quantum variable (operator P)

    2. Channels the backaction of the measurementinto the conjugate variable X

    3. Yields information about the P

    ˆ ˆ,X P i⎡ ⎤ =⎣ ⎦2

    1ω12

    Our goal – measure the population difference in a QND way togenerate a spin squeezed state

    Proposal by Kuzmich, Bigelow, Mandel in 1999.

    A measurement changes the measured statestandard QM textbook

    ˆ ˆ

    ˆ ˆ ˆ ˆ,

    A L

    iL L A

    H P P

    X H X P⎡ ⎤= ⎣ ⎦

  • QND of atomic population differenceBalanced photocurrent:

    ˆ ˆ( )ph phi n a a n φ+

    − − +∼Probe shot noise

    Atomic signal

    4,0 3,0 AN N Pφ − ∝∼

    out in inL L AX X Pκ= +

    In canonical variables:

    †2

    ( )iLX a a= − CESIUM LEVEL SCHEMECESIUM LEVEL SCHEME6P3/2

    6P1/2

    9.192 GHz6S1/2

    1.17 GHz852nm

    F=4

    F=4

    F=3

    F=5

    F=3

    F=2

    251 MHz

    152 MHz201 MHz F=4F=3

    Ideally no spontaneousemission

    nondemolitionmeasurement of

    population difference

  • Interferometry on a pencil-shaped atomic sample

    (dipole trapped Cs atomsT= 100 microK, 200.000 atoms)

  • QND measurement of atomic population difference

    2 1( ),n N N

    n Aδ γ σφ β β= + − =

    Δ

    Interferometer measured phase shift around balanced position:

    Probe shotnoise

    Atomic signal1/ 2n−

    Atoms

  • Monochromatic versus bichromatic QND measurementD. Oblak, J. Appel, M. Saffman, EP

    PRA 2009

    CESIUM LEVEL SCHEMECESIUM LEVEL SCHEME6P3/2

    6P1/2

    9.192 GHz

    6S1/2

    1.17 GHz852nm

    F=4

    F=4

    F=3

    F=5

    F=3

    F=2

    251 MHz

    152 MHz201 MHz

    F=4F=3

    Maximal spin squeezingscales as 1/ d

    20

    1 11 (1 )d

    ξ ηη η

    ⎛ ⎞= +⎜ ⎟+ −⎝ ⎠

    Maximum spin squeezingscales as 1/d

    20

    1 11 (1 )d

    ξη η

    =+ −

  • Daniel Oblak

    NielsKjaergaard

    Ulrich Hoff

    Patrick Windpassinger

    Juergen Appel

  • Step 1:coherent spin state preparation

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2-4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2-4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2

    Linear Pol

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2

    Linear Pol

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2

    Linear Pol

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2

    Linear Pol

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2

    Linear Pol

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2

    Linear Pol

    π-4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2

    Linear Pol

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2-4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F=4

    F=3

    -4 -3 -2 -1 0 +1 +2 +3 +4

    -3 -2 -1 0 +1 +2 +3

    mF

    mF

    F'=4

    F'=3

    -4 -3 -2 -1 0 +1 +2 +3 +4 F'=5

    -2 -1 0 +1 +2mF F'=2

    +5-5mF

    6 P2 3/2

    6 S2 1/2

  • STEPS 2 and 3: generation and verification of spin squeezed statevia QND measurement

    Best guess forsecond

    measurement

    (1) (1) (1)2

    ˆ1A L L L

    P x x kxκκ

    = =+

    (2) (1)L Lx kx−

    (1)Lx

    First probe pulse:(1) (1)ˆ ˆ ˆinL L AX X Pκ= +

    Outcome: (1)Lx

  • Experimental parameters

    80 microns

    Up to 2*105 atoms probed

    55 microns

    Resonant optical depth up to 30Optimal decoherence parameter η=0.2Optimal photon number per QND 2*107

    Expected projection noise reduction about 6 dBState lifetime ~ 0.2 msec

  • Determination of QND-induced decoherence η

    Two probe pulses

    Visibility reductionis (1-η)

  • Spin squeezing and entanglement

    Shot noise of QND probe

    J. Appel, P. Windpassinger, D. Oblak, U. Hoff, N. Kjærgaard, and E.S. Polzik. PNAS – Proceedings of the National Academy of Science (2009) 106:10960-10965

  • Multiparticle entanglement of an atom clock

    1

    4

    5

    3

    2

    2010

    Sørensen, Mølmer, PRL 2001Sanders et al

    Multiparticleentanglementof a spin squeezedstate

    Our result

  • Entanglement assistedcold atom clock

    Quantum state engineeringand measurement allows for unprecedented precision of sensing

    Sub-femtotesla magnetometry with1012 entangled atoms

    Entanglement assisted metrology andsensing is a part of Quantum Information

    Science

    Step 1:�coherent spin state preparation