Download - A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Transcript
Page 1: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

!"#$#%&!'&()*a#+

A new UCN sourceat TRIUMF

for EDM, β decay, gravity etc.

For these experiments,Phase space density is crucial.

Momentum space is limited by Fermi potential (Ec = 100~200 neV) and

magnetic potential (60 neV/T),

real spaceby bottle size

UCN

Page 2: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Present UCN source at ILL

Turbine

VerticalguideCold

source60 MWReactor

50 UCN/cm3 in source Ec = 335 neV

2 to 3 UCN/cm3

in an experimental bottle of Ec = 100 neV

0.7 UCN/cm3

in EDM cell

UCN density is limited by Liouville’s theoremfor the deceleration

by gravity and Doppler effect

Page 3: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

New UCN sourcesLANL, PSI, NCSU, Munich, ILL, SNS and Ours

no limitation of Liouville’s theorem, we can use phonon phase spaceuse neutron cooling by phonon

phonon

coldneutron

UCN

ρUCN = PUCN × τs (storage lifetime)

EinEUCN

form factorS(Q,ω)

He-II or SD2

Production rate, PUCN

PUCN = ∫ ∫ σcoh(Ein→EUCN) Φn(Ein) N dEin dEUCN

d2σ/dQdω= kf/ki σcoh/4π S(Q,ω)

Page 4: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

A new UCN production

Page 5: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Cold neutron flux Φn

Ours 20kW: Φn = 2×1012 n/cm2/sPSI 1.2MW: Φn = 2.6×1013 n/cm2/sNCSU 1MW: Φn = 1×1012 n/cm2/s

SNS 1.5MW: Φn ~108 n/cm2/s ILL 60MW: Φn = 109∼10 n/cm2/s

in cold neutron moderator

in cold neutron guide

capture flux: ×10-3

UCNsource

n

Page 6: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

UCN production rate PUCN

S(Q,ω)in

He-II

M.R. Gibbs et al. (1999)

single phonon

multi phonon

In our He-IIPUCN = (2~4)×10-9 Φn/cm3/s, Phys.Lett A301(2002)462

= 0.37~0.73×104 UCN/cm3/s20 kW

In Los Alamos SD2PUCN = 4.4×104 UCN/cm3/s, Phys.Lett B593(2004)55

76 kW

In PSI SD2PUCN = 2.9×105 UCN/cm3/s, Phys.Rev C71(2005)054601

1.2 MW

Page 7: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Storage time τs

250 s

123 s64 s

36 s

611 s

0.8

K0.

9 K1 K

1.1 K 1.2

K

He-II [Golub et al. (1983)]phonon up-scattering, 1/τph ∝ T7

τph = 600 s at THe-II = 0.8 Kβ decay lifetime, τβ = 886 swall loss, τwall = 300 sτs = 150 s

diluted in vacuumτs = 1.6 s, 0.24→9.6L Los Alamosτs = 6 s, 27L→2 m3 PSI

SD2 [Phys.Rev.C71(2005)054601]τph = 40 ms at TSD2 = 8 Kτortho-para = 100 msτa = 150 msτs = 24 ms

Page 8: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Extraction from source

neutroncapture γ

absorptionγ heating

coldneutron

Superfluid He, ε∼100%

UCNproduction

scattering

Vacuum

acceleration

SD2, ε∼10% [Phys.Rev.C71(2005)054601]

phonon

quickly removedremains

UCN averagevelocity 5m/s

(vav/4)·24ms = 3 cm

diffuse toUCN guide /

storage volumeshutter

4Hed

Page 9: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Shuttered UCN source

Page 10: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

World’s UCN projects, ρUCN = PUCN×τs×εext×(dilution factor) sourcetype

EcneV

PUCN /cm3/s

τs s εext ρUCN /cm3

source/exp.

TRIUMF spallation He-II 210 0.4×104

(10L) 150 ∼1 3×105 (20L)/5×104

ILL n beamHe-II 250 10 150 ∼1 **/1000

SNS n beamHe-II 134 0.3

(7L) 500 1 **/150

LANL spallationSD2 250 4.4×104

(240cm3) 1.6 1.3×103/4.4×104*

145 (3.6L)/120

PSI spallationSD2 250 2.9×105

(27L*) 6 0.1 2000 (2m3)/1000

NCSU reactorSD2 335 2.7×104

(1L) ** ** 1300/**

Munich reactorSD2 250 ** ** ** 1×104/**

Page 11: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Present statusLos Alamos 76 kW:

ρUCN = 145 UCN/cm3 in a 3.6 liter bottle at Ec = 200 neV0.8 UCN/cm3 at experiment

PSI 1.2 MW : will start in 2009

Munich 100 kW Trigger reactor at Mainz:8 UCN/cm3 in a 10 liter bottle at Ec = 250 neV

Sussex-RAL 60MW:PUCN = 1 UCN/cm3/s at Ec = 250 neV

Ours 390 W: PUCN = 4 UCN/cm3/s in a 10-liter He-II at Ec = 210 neV

(ρUCN = 160 UCN/cm3 at τs = 40 s)ρUCN = 10 UCN/cm3 at experimental port of Ec = 90 neV

Page 12: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Liq.

He

19K

D2O

He-

II

3 He

cryo

stat

4 He

cryo

stat

To 4Hepump

35 KSRD

220

To 3Hepump

UCN guide

UCNdetector

Spallation target

300

KD

2O

Gra

phite

1.25

m

3 mUCNvalve UCN production

in our prototypesource

p

n

phononUCN

open

SUS disk with a 1-cm diam hole

Page 13: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

1

10

100

1000

10000

100000

0 100 200 300 400Time (0.5s/ch)

Cou

nts

/ T

ime

bin

/ C

ycl

e

0.9K

1.0K

1.1K

1.2K

1.4K

Proton

Result of Nov. 2006UCN production with a proton-pulse of 1 μA

τ = 30 s atTHe-II = 0.9K

proton

Page 14: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

1

10

100

1000

10000

100000

0 100 200 300 400

Time (0.5s/ch)

Cou

nts

/ T

ime

bin

/ C

ycl

eWith/without the annular SUS disk,

with a p-pulse of 1μA

With Al foilone shot counting

With Al foilUCN go back and forth

Remove Al and the disk

UCN valveclosed openedproton

Page 15: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

UCN density by 390W p beam

assuming statistical distribution1.2×106 UCN / 36 liter

UCN flow rate = 1/4·ρvavS

UCNdetector

UCNvalve vav = 3.1 m/s at Ec = 90 neV

ε = 0.68

count rate = 1/4·ρvavSd·ε = 409 counts/s

ρ = 10 UCN/cm3

S = 4.22π cm2

Sd =0.52πcm2

1.2x106 UCN/30 s for 10 liter He-IIproduction rate = 4 UCN/cm3/s

Page 16: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Comparison with the theoretical prediction

Present exp. : production rate = 4 UCN/cm3/s5.2 UCN/cm3/s (Ec:210→250 neV)

↔ 0.9 UCN/cm3/s at ILL 250neV [Phys.Lett. A308(2003)67]

4 ~ 8 UCN/cm3/s at 400W, 250neV Predicted production rate

(1/8)×(2~4)×10-9 Φn /cm3/s, Φn(Tn = 80 K)Φn = 1.5×1010 (n/cm2/s) by Monte Carlo[ (2~4)×10-9 Φn /cm3/s, Φn(Tn = 20 K) ]

Page 17: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Liq.

He

10K

D2O

He-

II

3 He

cryo

stat

4 He

cryo

stat

To 4Hepump

0.5

K

35 KSRD

22086 K273 K

To 3Hepump

UC

Ngu

ide

3Hecirculator

UCNdetector

Spallation target

300

KD

2O

Gra

phite

Heater

1.2

m

3 m

Shield of1 m iron

0.5 m concrete

UCNdoublevalve

Liq. He

3He pot3Hecondenserγ heating

γ heatingis transformed to 3He gas kinetic energy

latent heat (potential energy) = 34.5 J/mol at 0.8 K

3He gas flow∝γ heating

Page 18: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

γ heating in He-IIat a 390W of proton beam

3He gas flow increased by 0.8 slm γ heating = 20 mW

He-temperature increased by 0.01 K ↕

75 mWby Monte Carlo assuming D2O is an ideal gas

Neutron temperature expected to be higher, 20 K → 80 Kneutron capture rate may be smaller at higher temperature

or Bragg cut off ?

Page 19: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Cooling power for He-II

latent heat of vaporization (34.5 J/mol)× PHe (vapor pressure 3 Torr at 0.8 K) × dV/dt (pumping power 1×104 m3/h)

/ R (gas constant)

γ heating is 8 W at 20 kW of p beamby Monte Carlo

(3He flow rate showed much smaller heating)

17 W

Page 20: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Preparation for Ramsey resonancewith the present source

UCN storagebottle in 2007

radiation shield

3He pump

4He pump

UCN guide

He-II cryostat

p beam

Page 21: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Study of EDM cell

Ho , E (in preparation)

H1 (in preparation)

UCN detector

from UCNsource

Fomblin coatedTeflon bottle

Fillingvalve

EmptyingvalveUCN

count

After t sUCN spinpolarizer

(in preparation)

UCN spinanalyzer

(in preparation)

Page 22: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Results of Nov. 2007

1

10

100

1000

10000

0 100 200 300 400

Time (s)

Counts/Time bin/Cycle

1

10

100

1000

10000

0 100 200 300 400

Time (s)

Counts/Time bin/Cycle

1

10

100

1000

10000

0 100 200 300 400

Time (s)

Counts/Time bin/Cycle

Leak from emptying valve

storage time in the Teflon bottle: τs = 210 s

HereEDM can bemeasured

Filling valve closed

Emptying valve openedA protonpulse

of 0.2 μA Opening

timedelayed

Moredelay

Page 23: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

100

101

102

103

104

105

UC

N c

ou

nts

300250200150100500

Time [s]

h = 90cm h = 85cm h = 80cm h = 70cm h = 60cm h = 50cm h = 40cm h = 30cm h = 20cm h = 10cm h = 5cm

Fitting function:

h = 30 ~ 90 cm

y = A exp ( - t / ! )

h = 10 ~ 20 cm

y = A1 exp ( - t / !1 ) + A2 exp ( - t / !2 )

Height Dependence of UCN Counts / SUS disk / Ip=1µAStorage time measurement as a function of h

τ1 = 23 s

τ2 = 39 sh = 10 cm

Piston

UCNvalve

fillingvalveclose

emptyingvalveopen

h

UCN detector

Aftert s

21 cm

Page 24: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Ramsey resonance

y

z

Rotating fieldH1·x·cosωtr + H1·y·sinωtr

ω = ω0

3He

n spinH0 (ω0 = γH0)

x

φ = π + γΔH0tcosφ+ ΔH0

γH1tr = π/2H1

π/2 π/2

H1 rotations and Larmor precession

are coherent

Y. Mauda et al.,Phys. Lett. A364 (2007)87_92Appl. Phys. Lett. 87, 053506(2005)

γΔH0tRotating frame of ω0

n spin H1

Page 25: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

φ = π + ϒΔH0tSmall solenoid ON 30 GaussSmall solenoid ON 30 Gauss

0.1 1-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Ton/T

off -

1

Neutron Energy (eV)

Hs = 33.37 ± 0.05 G

x = 0.0574 ± 0.0001 m

(!"# = 20.7 Gauss)

arises fromadditional field

Page 26: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

Experiment withprototype source

1. UCN density is consistent with the prediction.2. We can remove the γ heating,

which is not so serious.3. Storage time τs = 30 s (improved to 40 s in Nov. 2007)

is limited by the wall loss,but much longer in He-II bottle.

4. We are preparing Ramsey resonance with the present source

Page 27: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

At TRIUMF

Φn = 1.8x1012 /cm2/s in 10L He-II

cryogenicwindow

T=0.8K

Ec = 210 neVτs = 150 s

phononUCN

EpxIp = 20kW

PUCN = 0.4×104 UCN/cm3/s

Page 28: A new UCN source at TRIUMF · 2009-11-20 · e c r y o s t a t 4 H e c r y o s t a t To4He pump 0. 5 K S 35K R D 2 2 0 273 K 86K To3He pump U C N g u i d e 3He circulator UCN detector

ρUCN = PUCN×τs×εext×(dilution factor)sourcetype

EcneV

PUCN /cm3/s

τs s εext ρUCN /cm3

source/exp.

TRIUMF spallation He-II 210 0.4×104

(10L) 150 ∼1 3×105 (20L)/5×104

ILL n beamHe-II 250 10 150 ∼1 **/1000

SNS n beamHe-II 134 0.3

(7L) 500 1 **/150

LANL spallationSD2 250 4.4×104

(240cm3) 1.6 1.3×103/4.4×104*

145 (3.6L)/120

PSI spallationSD2 250 2.9×105

(27L*) 6 0.1 2000 (2m3)/1000

NCSU reactorSD2 335 2.7×104

(1L) ** ** 1300/**

Munich reactorSD2 250 ** ** ** 1×104/**