Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and...

78
1 Transits

Transcript of Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and...

Page 1: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

1

Transits

Page 2: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

flux

secondaryeclipse

transittime

tT

1 2 3 4

Increasing flux

flux = star + planet

tF

ΔF

b R* = a cos i

2

Transits

Page 3: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit Light-Curve

Normalized

+Flux+

Time+

• Transit LC provides functions of time and flux

• The simple box-car transit model is used for transit search algorithms. Examples: Quasi-periodic Automatic Transit Search (QATS) and Box Least-Squares (BLS) algorithms (Carter & Agol 2012; Cameron et al. 2006)

Page 4: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

4

Example:  Mid-­‐infrared  transit

8  micron  transit  of  HD  189733  observed  with  Spitzer

Page 5: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

5

Example:  Mid-­‐infrared  transit

8  micron  transit  of  HD  189733  observed  with  Spitzer

Page 6: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

6

Example:  Mid-­‐infrared  transit

8  micron  transit  of  HD  189733  observed  with  Spitzer

Very  simple  shape

Page 7: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Normalize

d  Flux

Time

t1

t2 t3

t4

Trapezoidal  Transit  Light  Curve:

• Ingress duration (t2 - t1)

• Transit duration (t4 - t1)

• Transit time: (t2 - t3)/2

• Orbital periodIngress eg

ress

Page 8: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

8

RelaPve  flu

x

Time

b/R*

t0

v/R* Planet  Velocity  across  stellar  disk

Impact  Parameter

Key Transit Ingredients (circular orbit)

Page 9: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

9

RelaPve  flu

x

Time

t0

Key Transit Ingredients (circular orbit)

Page 10: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

10

RelaPve  flu

x

t0 t0P

(stellar  density)

Mandel  &  Agol  (2002);  Seager  &  Mallen-­‐Ornelas  (2003);  Winn  (2010)

Key Transit Ingredients (circular orbit)

Page 11: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

11

Angular  size• Dimensionless  angular  sizes  can  be  esPmated  from  light  curves  (radians  are  dimensionless)

• For  Kepler-­‐36b,c  know  a1/R*,  a2/R*,  Rp/R*,  so  Rp/(a2-­‐a1)  gives  angular  size  at  conjuncPon:  ≈2.7  x  angular  diameter  of  moon  viewed  from  Earth

Kepler  36c  seen  from  36b

from  E.  Agol

Page 12: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

12

EsPmaPng  Transit  DuraPon  for  circular  and  edge-­‐on  orbit:

hrs(from kepler.nasa.gov)

Page 13: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

13

Area  of  overlap  of  two  circles:  ingress/egress

see  Kopal  (1975)  ,  Mandel  &  Agol  2002

αβ

d

r1r2

Gefng  more    complicated  ...

Page 14: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

R*

limb-darkenedstar

planet

d = zR*

Rp = pR*

orbital path

14

Limb-­‐darkened  Transit  Light  Curve:Normalize

d  Flux

Time

Limb-­‐darkening  alters  ingress  /  egress  shapes  and  complicates  determinaPon  of  transit  depth  and  Pme.    Depending  on  data  quality,  can  lead  to  degeneracies  between  b,  Rp/Rs  and  stellar  limb-­‐darkening  properPes.

Page 15: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Limb-darkening

to observer

bottomof photosphere

top ofphotosphere

surface

Page 16: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

• approximate solution to plane-parallel radiative transfer yields linear source function

• line-of-sight surface intensity becomes linear function of mu.

• At glancing angles, tau = 1 corresponds to greater height in the atmosphere.

τ⊥

θ μ=cos(θ)

τ=τ⊥/μ S(τ⊥)

Limb-darkening

Page 17: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Limb-darkening Law

to observer

bottomof photosphere

top ofphotosphere

surface

Going a step farther, Eddington approximationpredicts that limb ~ 40%

of central intensity

Page 18: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Limb-darkening (the Sun)

40% is pretty close! (in rad. eq.)

Wavelengthdependent

fairly linear!

Page 19: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Limb-darkening (the Sun)

Limb

contributionfunctions

Limb

Center

(can be used to infer structure of atmosphere)

Page 20: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Vernazza et al. 1973

(model) temperature structure of the Sun

Page 21: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Limb  Darkening

wavelen

gth

visible

near-­‐infrared

Page 22: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Nor

mal

ised

flux

Time (min)

b = 0.4

b = 0.8

–100 –50 0 50 100

1.00

0.99

0.98

0.97

Nor

mal

ised

flux

1.00

0.99

0.98

0.97

no limbdarkening decreasing λ

ΔF

tTtF

22

Model  LCs  at  two  different  impact  parameters  and    wavelength  from  3  to  0.45  microns  (Seager  et  al.  2003).

Page 23: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Limb-darkening (in practice)

HD189733 (8 microns)

(Clarret et al. 2004)

(model) fits to models ofvarious forms:

Page 24: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Limb  Darkening

a  =  0.10  b  =  0.33  

GJ1214  (M4)  at  1.5  μm  

Page 25: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

25

LC  model  requires  IntegraPon  over  limb  darkening

14

I(r)

r

AnalyPc  for  quadraPc  &  ‘non-­‐linear’  limb-­‐darkening  models  (Mandel  &  Agol  2002;  Pal  2008)

Page 26: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

26

If  the  LC  data  quality  is  high,  then  you  can    fit  for  the  limb-­‐darkening  coefficients

Kreidberg  et  al.  (2014)

Page 27: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

27

Beyond  ‘basic’  light  curves

• Planet  asymmetry:  rotaPonal  &  thermal  oblateness  (Carter  &  Winn  2010;  Dobbs-­‐Dixon  et  al.  2012)

• Wavelength  dependence  (Knutson,  Bean)

• Moons,  rings  (Kipping,  Barnes)

• Secondary  eclipse  mapping  (Majeau  et  al.  2012)

• RefracPon  (longer  periods;  Sidis  &  Sari  2011),  gravitaPonal  lensing  (irrelevant)

• Star  spots,  granulaPon,  flares,  gravity  darkening  (Sanchis-­‐Ojeda,  Winn)

• Light  travel  Pme,  Doppler  effects,  relaPvisPc  effects  (Avi  Shporer)

• Reflected  light,  polarizaPon,  mutual  events

• DuraPon  variaPons  (Miralda-­‐Escude  2002)

Page 28: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

The  things  that  you  can  directly  measure:  • Transit  duraPon  • Ingress/egress  Pme  • Transit  depth  • Mid-­‐transit  Pme  • Time  between  successive  transits  

Things  that  you  can  derive  from  these  observables:  • Orbital  period  • Orbital  ephemeris  • RaPo  of  the  size  of  the  planet  to  the  size  of  the  host  star  (Rp/Rs)  • Impact  parameter,  b  =  a  cos  i  /  Rs        for  e  =  0  

Things  that  you  can  use  these  values  to  determine  with  K  and  e  from  RV,  and  esPmate  of  Ms:  • RaPo  of  the  size  of  the  semi-­‐major  axis  to  the  size  of  the  host  star  (a/Rs)  • Orbital  inclinaPon  • Planet  mass  • a  for  the  orbit  using  Newton’s  version  of  Kepler’s  third  law  • Radius  of  the  star  • Radius  of  the  planet  • Density  of  the  star  • Surface  gravity  of  the  planet

Recap:

Page 29: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit Searches

• Initial transit searches focused on planets already known via RV method

• Later, large surveys (HAT, WASP, CoRoT, Kepler)

Page 30: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

30

Page 31: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

31

Winn (2011)

Page 32: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transits with eccentric orbits:

• probability of transit changes with e

• transit time - eclipse time is strong function of e.

• transit symmetry is a function of e

Page 33: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

33

What  does  this  mean  for  transit  surveys?

Page 34: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

34

For  planets  with  same  semi-­‐major  axis,  Ptra  increases  for  e  >  0.    Example:    HD80606b  has  e  ~  0.93  and  a  ~  0.5  au.  Ptra  goes  from  ~  1%  to  ~  8%.    ...  this  planet  transits.

Transit  surveys  biased  toward  finding  ecc.  planets.  Easy  to  correct  ....  if  you  know  e.

Could  have  occultaPon  or  transit,  not  always  both.

Page 35: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

35

Barnes  (2007)

Ingress  and  egress  duraPons  can  differ  by  several  minutes

e  =  0.52

Page 36: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

36

(at  mid-­‐transit)

Change  in  Velocity  between  ingress  and  egress  

Barnes  (2007)

Page 37: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

37

Barnes  (2007)

too  small  to  measure  for  small  planets

Page 38: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

For Hot-Jupiters, P ~ 10% .... you only need 10 to find 1 (not exactly, but ...)

HD  209458b

Discovered  when  there  were  11  Hot  Jupiters  known  from  RV  

Page 39: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

39

(from kepler.nasa.gov)

Page 40: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

For Hot-Jupiters, P ~ 10% .... you only need 10 to find 1 (not exactly, but ...)

Page 41: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

For Hot-Jupiters, P ~ 10% .... you only need 10 to find 1 (not exactly, but ...)

HD  209458b

Transit  discovered  when  there  were  11  Hot  Jupiters  known  from  RV  

Page 42: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

GJ  436b:  the  first  Neptune

Gillon  et  al.  2007,  ApJ,  472,  L13  

Only  a  handful  of  known  Neptune-­‐mass  planets  from  RV,  but  this  one  had  been  known  for  several  years,  prior  to  transit  detecPon.

Neptune:  10  <  Mp  <  20  MEarth  

This  was  a  super  exciPng  discovery!!!!!

Page 43: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Search  for  transits  of  known  planets

55  Cnc  e:  a  hot  super-­‐Earth

Dawson  &  Fabrycky,  2010,  ApJ,  722,  937  Winn  et  al.  2011,  ApJ,  737,  L18  Demory  et  al.  2011,  A&A,  533,  114  

Only  a  handful  of  known  super-­‐Earths  from  RV,  but  this  one  had  also  been  known  since  2004!  

The  only  transiPng  planet  around  a  star  that  is  visible  with  the  naked  eye.

super-­‐Earth:  2  <  Mp  <  10  MEarth  

Page 44: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

44

Geometric Probability is only part of the problem ... Suppose you know nothing about planets, but wantto find them using the transit method. How many starsmust you observe before finding just one?

N(stars) ~ 1/(f x Ptra) ... where f = freq. of planets. If 1 / 100 stars have giant planets at 0.05AU, then observing > 1000 stars might yield one.

Turn it around, observe 100, 000s and you candetermine f .... this is the main idea behind missionslike Kepler and CoRoT.

Page 45: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit  Searches:  equipment

HATNet  

Off-­‐the-­‐shelf  Canon  200mm  f/1.8  lenses  with  CCD  detectors  

Distributed  network:  4  telescopes  in  AZ,  2  in  HI  

~40  transiPng  planets  found  to  date,  mostly  Jupiters,  but  a  few  Neptunes

Page 46: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit  Searches:  equipment

SuperWASP  

Off-­‐the-­‐shelf  Canon  200mm  f/1.8  lenses  with  CCD  detectors  

Two  staPons,  one  in  the  Canary  Islands,  and  one  in  South  Africa  

Each  staPon  has  eight  cameras  

~100  transiPng  planets  found  to  date,  all  Jupiters

Page 47: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit  Searches:  equipment

SuperWASP  

Off-­‐the-­‐shelf  Canon  200mm  f/1.8  lenses  with  CCD  detectors  

Two  staPons,  one  in  the  Canary  Islands,  and  one  in  South  Africa  

Each  staPon  has  eight  cameras  

80  transiPng  planets  found  to  date,  all  Jupiters

Page 48: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

48

Page 49: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

49

Page 50: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit  Searches:  @meline

HD  209458b

Page 51: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit  Searches:  why  the  drought?

1.  More  noise  than  expected  from  the  Earth’s  atmosphere  

ScinPllaPon:  

The  variaPons  in  intensity  component  of  atmospheric  ‘seeing’.

Also  “systemaPcs”  o|en  have  Pme  variaPons  of  the  same  order  as  close-­‐in  planet  transit  duraPons.

Page 52: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit  Searches:  why  the  drought?

2.  A  high  rate  of  astrophysics  false  posiPves

Page 53: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit  Searches:  why  the  drought?

3.  Hot  Jupiters  are  not  very  common

Frequency  is  a  li}le  less  than  1%

Page 54: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transits  From  Space:2007+

Page 55: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit  Searches:  equipment

COROT  (CNES+ESA)  

A  27cm  diameter  space  telescope  dedicated  to  finding  transiPng  planets  

Cost:  $170M  

Launched  in  2007  

Observing  strategy  is  to  stare  at  fields  of  150  days  

24  transiPng  planets  found  to  date,  but  plagued  by  false-­‐posiPves,  mostly  Jupiters  

First  transiPng  super-­‐Earth:  COROT-­‐7b  

Spacecra|  failure  in  late  2012

Page 56: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

COROT-­‐7bThe  first  transiPng  super-­‐Earth,  but  difficult  to  follow-­‐up

Leger  et  al.  2009,  A&A,  506,  287  Queloz  et  al.    2009,  A&A,  506,  303

Page 57: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Transit  Searches:  equipment

Kepler  (NASA)  

A  custom-­‐built,  0.95m  diameter  space  telescope  dedicated  to  finding  transiPng  planets  

Cost:  $600M  

Launched  in  2009  

Observing  strategy  is  to  stare  at  the  same  field  for  3+  years  

134  transiPng  planets  found  to  date  

Lots  of  amazing  results!  

Spacecra|  failure  in  May  2013  —>  K2  mission

Page 58: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

58

>  3000  Kepler  planets

Page 59: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

TESS:  Transi@ng  Exoplanet  Survey  Satellite

A  new  space  telescope  to  find  small  transiPng  planets  around  bright  stars  –  these  are  the  planets  that  we  could  study  in  more  detail.  

NASA  mission  

$200M  cost  

4  x  10cm  lenses  

Scheduled  for  launch  in  2017  

Mostly  planets  in  short-­‐period  orbits,  but  may  find  habitable-­‐zone  planets  around  small  stars

Page 60: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

60

proposed  in  2007  ....  2024  launch

covers  about  50%  of  sky

Page 61: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

predicted in 1890’s (Holt)... observed in 1920s

“Rotational Effect”

Page 62: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

McLaughlin (1924)(1901 -- 1965)

Rossiter (1924)(1886 -- 1977)

sleepers ...

Page 63: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Rotational Broadening:

Orient coordinate system so that rotation axis is in y-z plane

Page 64: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

z-component(line-of-sight)

Rotational Broadening:

Orient coordinate system so that rotation axis is in y-z plane

Page 65: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

z-component(line-of-sight)

Rotational Broadening:

Orient coordinate system so that rotation axis is in y-z plane

lines of constant x, parallel to y => lines of constant

Doppler shift

Page 66: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Rotational Broadening:

Page 67: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Rotational Broadening:

• assume line shape H uniform across disk

• observed line profile

• G = rotational broadening kernel; essentially an intensity weighted integral of the projected doppler shift.

• all intensity variations factor in!

See: Ludwig (2007) and Gray (2005)

Page 68: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

G (with linear limb-darkening)

Page 69: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Alternative

I(mu,lam)

numerically integrate over surface (int. weights important)

Page 70: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

broadening example:

Page 71: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

71

similar  to  star-­‐spot  induced  bisector  changes  also  related  to  doppler-­‐imaging  of  stars.

Page 72: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

The  Rossiter-­‐McLaughlin  Effect

rotaPon  +  other  broadening

rotaPon  only

sharp  edge  unphysical...

Page 73: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

The  Rossiter-­‐McLaughlin  Effect

Page 74: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

74

Real  examples  ...

83  planets  with  measurements,    35  show  substanPal  misalignment.   list  maintained  at:  h}p://www.physics.mcmaster.ca/~rheller/

Page 75: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

75

Winn  et  al.  2010

Importance  of  Pdal  interacPons

Page 76: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

Other ways to estimate obliquities:

• Measure Vsin(i) for many stars with transiting planets (Hirano et al. 2014; Morton & Winn, 2014)

• See Van Eylen et al. (2014), Chaplin et al. (2013) for combination of astroseismology and transits to determine obliquities.

• star-spot crossings (e.g. Desert et al. 2011).

Page 77: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

77

MulPple  transits  across  mulPple  star  spots

Obliquity  <  15  degrees  (Desert  et  al.  2011)

Page 78: Transits - The University of Arizonabarman/ptys568/ptys568_docs/lecture4...astroseismology and transits to determine obliquities.

78

Next  week:  Micro-­‐lensing  Direct  Imaging