The β Pictoris Heritage 1- IPAG - Institut de Planétologie et Astrophysique de Grenoble 2- LESIA -...

29
The β Pictoris Heritage 1- IPAG - Institut de Planétologie et Astrophysique de Grenoble 2- LESIA - Observatoire de Paris 3- STSI – Space Telesope Sciente Institute 4- ESO – European Southern Observatory ESO 30’ Talk, Friday 10, 2010 – ESO/Santiago Gaël Chauvin Anne-Marie Lagrange 1 , Mickael Bonnefoy 1 , Anthony Boccaletti 2 , David Mouillet 1 , David Ehrenreich 1 , Daniel Apai 3 , Daniel Rouan 2 , Damien Gratadour 2 , Markus Kasper 4 & Julien Girard 4
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of The β Pictoris Heritage 1- IPAG - Institut de Planétologie et Astrophysique de Grenoble 2- LESIA -...

The β Pictoris Heritage

1- IPAG - Institut de Planétologie et Astrophysique de Grenoble2- LESIA - Observatoire de Paris3- STSI – Space Telesope Sciente Institute4- ESO – European Southern Observatory

ESO 30’ Talk, Friday 10, 2010 – ESO/Santiago

Gaël Chauvin

Anne-Marie Lagrange1, Mickael Bonnefoy1, Anthony Boccaletti2, David Mouillet1, David Ehrenreich1, Daniel Apai3, Daniel Rouan2,

Damien Gratadour2, Markus Kasper4 & Julien Girard4

OutlineThe β Pictoris Heritage

I- Introduction to β PictorisYoung nearby association, star & debris-disk

II- Technics & NaCo ImagingChallenge, evolution, limitations & observations

III- The β Pic b Giant Planet Detection, recovery, characterization & origin

IV- Perspectives

I- Introduction The young, nearby association

Member of the young, nearby β Pictoris association

Co-moving group,(U,V,W) = (0.3, -11.5, -2.5) km.s-1

Age diagnostics (12 Myr),Isochrones, Li, Hα and X-ray

Now, up to 30 members

Prime targets for giant planet Imaging, as young EGPs are hotterand brighter at young ages.

Zuckerman et al. (2001); Torres et al. (2006)

I- IntroductionFormation scenario

Galactic space position and motionclosely related to Sco-Cen &its 2 sub-groups: LCC and UCL

Common dynamical evolution

Sequence of successive episodesof triggered star formation: BPMG, TWA, and η & ε Cha

Joint action of expanding shells and SN events

Dynamical age = 11.2 +- 0.3 Myr Ortega et al. (2002, 2009)

I- IntroductionBright Southern SourceV = 3.86; K = 3.5, L’ = 3.5Spectral type A5VMass = 1.75 Msund = 19.3 pc Age (Myrs) = 12 MyrsFe/H +0.05

1983: IR excess detected by IRAS

1984: First use of a stellar Coronograph (after Lyot).

> Detection of a circumstellar disk

β Pictoris: The star

Smith &Terrile (1984)

I- IntroductionThe debris-disk around β Pictoris

Re-processed dust (small grains)

Large variety of structures:- Main disk (PA = 31.4o)- Inner warp (PA = 35.6o)- Global “Butterfly” asymmetries - 4 Belts (6, 16, 32 and 52 AU)

ESO3.6m - ADONIS/SHARP (H, FoV 12.5”)Mouillet al. 97

Mouillet et al. 97; Heap et al. 00Augereau et al. 01; Okamoto et al. 04 Golimowki et al. 06; Freistetter et al. 07

250

AU

I- IntroductionThe debris-disk around β Pictoris

HST/STIS, Heap et al. 00

HST/ACS, Golimowski et al. 06

Re-processed dust (small grains)

Large variety of structures:- Main disk (PA = 31.4o)- Inner warp (PA = 35.6o)- Global “Butterfly” asymmetries - 4 Belts (6, 16, 32 and 52 AU)

I- IntroductionThe debris-disk around β Pictoris

Re-processed dust (small grains)

Large variety of structures:- Main disk (PA = 31.4o)- Inner warp (PA = 35.6o)- Global “Butterfly” asymmetries - 4 Belts (6, 16, 32 and 52 AU)

Falling evaporating bodies, Observed in spectroscopic lines

Explained by the presence of one or several planets of 2, 0.5 and 0.1 Mjup at 12, 25 and 44 AU, resp.

Beust & Morbidelli 00

I- IntroductionThe debris-disk around β Pictoris

Re-processed dust (small grains)

Large variety of structures:- Main disk (PA = 31.4o)- Inner warp (PA = 35.6o)- Global “Butterfly” asymmetries - 4 Belts (6, 16, 32 and 52 AU)

Falling evaporating bodies, Observed in spectroscopic lines

Explained by the presence of one or several planets of 2, 0.5 and 0.1 Mjup at 12, 25 and 44 AU, resp. Freistetter et al. (2007)

OutlineThe β Pictoris Heritage

I- Introduction to β PictorisYoung nearby association, star & debris-disk

II- Technics & NaCo ImagingChallenge, evolution, limitations & observations

III- The β Pic b Giant Planet Detection, recovery, characterization & origin

IV- Perspectives

Why Imaging?II- Techniques

Detect/characterize something faint, angularly close to something bright

Imaging: an observing challenge!II- Techniques

High image quality - High angular resolution, PSF Stability- Calibration of static aberrations

Stellar Halo Brightness - Halo attenuation/PSF subtraction

- Speckle noise Intrinsic companion faintness

- Long overall observations

HIP95270 (Tuc-Hor)VLT/NaCo H, 10” by 10”

(?)

(?)

1994 -ESO3.6m/Come-On+ SH WFS; 62 actuators;

Sr = 40-50% Neuhäuser et al 05 Sr < 10% Janson et al. 07

GQ lup star (K7V; V=11.4; K=7.1)

VLT/NACO - 2005

Impressive evolution

High Angular Resolution

II- Techniques

2005 -VLT/NACO SH WFS; 185 actuators

Sr > 90%

2012 –SPHERESH WFS; 1700 actuators

The art of PSF subtraction II- Techniques

β Pictoris, ADI-L’, Tobs = 60minFoV = 2.5” by 2.5”, Field Rot. ~ 60deg

High Contrast at inner angles

Main limitation (<1.0-2.0’’): Atmospheric & instrumental speckles

Coronagraphy- Occulting and Lyot-pupil mask - 4QP Mask, Boccaletti et al. 08- new concepts: PIAAC, ALC, APC, Vortex.

Differential Imaging- PSF-reference (RDI)- Spectral (SDI), Close et al. 05 - Polarimetric (PDI)- Angular (ADI), Marois et al. 06

Post-processing tools - LOCI, Lafrenière et al. 07 - ANDROMEDA, Mugnier et al. 10

NaCo high-contrast upgradesII- Techniques

2001, Nov: NaCo First-lights!

2004: Aladdin Detector upgrade

2005: Simultaneous differentialImaging mode

2006: 4QPM coronagraph

2008: Pupil-tracking upgrade

2010: APP, apodized pupil plane

2011: APP-Spec, Vortex, DAM…

NaCo/Yepun-Nasmyth B

ADI: Photometry & astrometryII- Techniques

Need for adapted tools, Local insertion of fake-negative planets to recover astrometry & photometry

OutlineThe β Pictoris Heritage

I- Introduction to β PictorisYoung nearby association, star & debris-disk

II- Technics & NaCo ImagingChallenge, evolution, limitations & observations

III- The β Pic b Giant Planet Detection, recovery, characterization & origin

IV- Perspectives

NaCo observing campaigns

UT Date ESO-program FT/PT mode band Remark

2002 Nov 18 070.C-0565 FT COR H,K disk detection2003 Nov 10-15 072.C-0624 FT IMSAT L’ planet detection2008 Nov 11 082.C-713 FT IMSAT L’ no detection2009 Feb 11, 17 282.C-5037 FT IMSAT L’ no detection2009 Oct 25 384.C-0207 FT IMSAT L’ recovery2009 Nov 25, 26 084.C-0396 FT IMSAT L’ -2009 Dec 26, 29 084.C-0739 PT IMSAT L’ -2010 Mar 20 284.C-5057 PT IMSAT Ks -2010 Apr 04 284.C-5057 PT IMSAT Ks -2010 Apr 10 284.C-5057 PT APP NB4.05 -2010 Sep 27 085.C-0277 PT IMSAT L’ -2010 Nov 14, 20 086.C-0341 PT IMSAT L’, Ks -

III- Results

Planetary Candidate DetectionIII- Results

GTO-2003 observationsNov 10, 11 and 13, 2003 Field-Tracking observationReference at same parall. angle

2008, A.-M. Lagrange re-analysis1st analysis: Sky-subtraction problemPlanet candidate detection!ΔL’ = 7.7 magSep = 411 +- 8 mas

Fake-planet simulationsRedetection in all 3 nights

If planet: 8-9 Mjup at proj. dist. of 8 AURelated to the 1981 Bpic transit? Lecavelier Des Etangs et al. 09

Nov 2003 (NaCo-L’)

500 mas

Early-2009 Non-detectionIII- Results

Follow-up early-2009 campaignJan and Feb 2009 Field-Tracking observationReference at same parall. angle

No re-detection down to 6.5 AUConstrain on the orbitalproperties: a, e, ω…

most probable solution:- e < 0.1; a= 8-9 AU, - Larger a still possible (> 17 AU),- after quadrature,- Assuming prograde rotation Lagrange et al. 09b; Fitzgerald et al. 09; Olofsson 01

III- Results

Det

ectio

n lim

it

line

of s

ight

Transit 81

Detection 03

Non-Detection 09

quadrature

17.1 AU52.8 yrs

8.1 AU17.2 yrs

Early-2009 Non-detectionFollow-up early-2009 campaignJan and Feb 2009 Field-Tracking observationReference at same parall. angle

No re-detection down to 6.5 AUConstrain on the orbitalproperties: a, e, ω…

most probable solution:- e < 0.1; a= 8-9 AU, - Larger a still possible (> 17 AU),- after quadrature,- Assuming prograde rotation Lagrange et al. 09b; Fitzgerald et al. 09; Olofsson 01

III- Results

Nov 2003 Oct 2009

500 mas

Follow-up late-2009 campaignOct 25 2009 Field-Tracking observationReference at same parall. angle

Re-detection on the SW partΔL’ = 7.8+-0.2 magSep = 298+- 16 mas

Candidate Confirmed as a bound companion P = 17 - 35 yrsa = 8 - 15 AUe < 0.05; i ~ 90 degPA = 212 +- 4 deg > Main Disks/Warp?

β Pictoris b Recovery

III- Results

Additional confirmation & characterization

NaCo APP NB4.05-imagingObservation: 10 Apr, 2010ΔNB4.05 = 9.2+-0.2 magSep = 350+- 16 masQuanz et al. 10

NaCo Ks-imagingObservation: 20 March, 2010ΔKs = 9.2+-0.2 magSep = 350+- 16 masBonnefoy et al. 10, submitted

Mar 2010 (NaCo-Ks)

III- Results

Additional confirmation & characterization

NaCo APP NB4.05-imagingObservation: 10 Apr, 2010ΔNB4.05 = 9.2+-0.2 magSep = 350+- 16 masQuanz et al. 10

NaCo Ks-imagingObservation: 20 March, 2010ΔKs = 9.2+-0.2 magSep = 350+- 16 masBonnefoy et al. 10, submitted

(K- L’) = 1.25+-0.24Red and dusty atmosphereField dwarfs: SpT = [L2 – T0]

III- Results

Additional confirmation & characterization

NaCo APP NB4.05-imagingObservation: 10 Apr, 2010ΔNB4.05 = 9.2+-0.2 magSep = 350+- 16 masQuanz et al. 10

NaCo Ks-imagingObservation: 20 March, 2010ΔKs = 9.2+-0.2 magSep = 350+- 16 masBonnefoy et al. 10, submitted

(K- L’) = 1.25+-0.24Red and dusty atmosphereTeff = 1600 +- 200K; logg = [3.5-5.5]

Mass determination?

Cold start

Hot start

. RV + Disk dynamics: M < 20 Mjup

. Evolutionary model predictions:

- Companion KL’ photometry

- β Pictoris: 19.3pc and 12 Myr

> “Hot-start”: 8-9 Mjup (Baraffe et al. 03)

> “Cold start”: BD-stellar masses (Marley et al.

07)

“Cold start”’ models failed to reproduce β Pic b

luminosity, i.e the energy release during the Gas

accretion shock.

β Pic b

Predicted Mass & OriginIII- Results

Core Accretion does not work at > 20-30 AU > Core or Disk fragmentation ?(Dodson –Robinson et al. 09; Boley et al. 09)

Inner limit to the Core or Disk fragmentation?

β Pictoris b: serious candidate for a formation mechanism via CA

CA L

imit

OriginIII- Results

OutlineThe β Pictoris Heritage

I- Introduction to β PictorisYoung nearby association, star & debris-disk

II- Technics & NaCo campaignsChallenge, evolution, limitations & observations

III- The β Pic b Giant Planet Detection, recovery, characterization & origin

IV- Perspectives

- PerspectivesIV- Perspectives . 2003 candidate confirmed, characterized (different modes, teams & bands)

> waiting for confirmation from other facilities (Gemini, Keck). Follow-up and refinement of the Orbital properties. Inside the main disk or in the warp? Dynamical Implication?. Spectral Characterization: - add. Photometry, spectroscopy, - Atmosphere properties, impact of low-gravity atmosphere . Use of Complementary techniques: - RV-HARPS, ok but active-star - VLTI/PIONIER, CP precision? - Astrometry (GAIA) and Transit,

> dynamical mass for evolutionary model calibration!. Search for Giant planets c and d!. VLT/SPHERE (early-2012): Prime target for the Science Verification!