The LPCTrap experiment - Jyväskylän yliopistoMicrosoft PowerPoint - LPCTrap_a_mery.ppt Author...

31
EURONS 2007 1 The LPCTrap experiment Measurement of the β β β-ν ν ν angular correlation parameter in 6 He β β β-decay Alain MERY LPC Caen EURONS meeting April 11-15, 2007, Saariselkä, Finland

Transcript of The LPCTrap experiment - Jyväskylän yliopistoMicrosoft PowerPoint - LPCTrap_a_mery.ppt Author...

  • EURONS 2007 1

    The LPCTrap experiment

    Measurement of the ββββ-νννν angular correlation parameterin 6He ββββ-decay

    Alain MERYLPC Caen

    EURONS meeting

    April 11-15, 2007, Saariselkä, Finland

  • Outline:

    -Motivations

    - Experimental Set-up

    - Preliminary results (2006)

    - Improvements

    - Conclusion & outlook

  • Standard Model:Weak Interaction = Vector and Axial currents (V-A theory)

    No Tensor or Scalar currents

    Weak interaction and ββββ decay

    Decay rate distribution for allowed β transitions: (Jackson 1957)

    a : β-ν angular correlation parameter

    eν .

    −e +He

    6++

    Li6

    θ

    ν

    ν

    ννν θ ee

    e

    e

    e

    e

    eeeeee ddEEE

    ppa

    E

    mbENEZFCddEEN Ω

    ++=ΩΩ cos

    .1)(),(),( 0

    eeLiHe ν++→−6

    3

    6

    2

    (depends on the coupling constants of weak interaction)

  • - Pure Gamow-Teller transition (∆J = +1)

    - Half life T1/2 = 0.806 s

    -Tβmax=3.5 MeV

    -TRmax=1.4 keV

    - Production @ SPIRAL: ~ 108 pps

    Most precise measurement : Johnson et al. 1963

    0030.03308.0 ±−=GTa

    For pure Gamow-Teller transitions :

    3

    1a GT −=SM predicted value :

    ββββ-νννν correlation parameter

    2'2

    2'2

    2'2

    2'2

    3

    1

    TTAA

    TTAA

    GT

    CCCC

    CCCCa

    +++

    −−+−=

    (from 6He β-decay)

  • Measurement in coincidence of the electron and the recoiling ion

    3 observables : - β energy- ion Time Of Flight- β-ion angle

    LPCTrap experiment

    � Control of systematic effects

  • LPCTrap experiment

    Cinematic of the decay in this ‘back-to-back’ configuration:

    Ion TOF (ns)

    ββ ββen

    erg

    y(k

    eV

    )

    ( a=-1/3 )

    ν

    ν

    ννν θ ee

    e

    e

    e

    e

    eeeeee ddEEE

    ppa

    E

    mbENEZFCddEEN Ω

    ++=ΩΩ cos

    .1)(),(),( 0

  • LPCTrap experiment

    ___ Axial ( a = -1/3 )

    ___ Tensor ( a = +1/3 )

    Ion TOF (ns)

    Nb of evts for 0.5 % precision : ~ 106 evts

    ���� a value extracted from comparison with Monte-Carlo simulations

    Cinematic of the decay in this ‘back-to-back’ configuration:

  • LIRAT

    LIRAT

    RFQ

    Trap

    Production target ECR source

    Primary beam : 13C at 75 MeV/ATarget: 12C

    SPIRAL and the LIRAT beam line

  • Source offline

    RFQCB

    LIRAT

    Paul trap +Detection setupRIB

    6He+

    E~10 keV

    ProductionSeparationTransport

    Beam preparationCooling & Bunching (H2)

    FWHM(TOF) ≈ 500 nsUp to a few 106 ions per bunches

    Trapping &

    β decay measurement

    LPCTrap setup

  • RFQ Cooler Buncher Paul trap

    LPCTrap setup

  • 1 cm

    - 6 rings- opened geometry- potential well ~ 10 Volts

    The transparent Paul trap (Delahaye 2002)

    Injection : 20 %Capacity : > 105 ionsLife time : > 1 second

    (6Li+ ions,VRF = 120 Vpp, fRF = 1.15 MHz)

    1 cm

  • The transparent Paul trap (Delahaye 2002)

    Ion cloud:size : ~1mmtemperature : ~ 0.1 eV

    (from simulation)

    � Evolution of the decay source with RF voltage

  • Ion bunchesfrom RFQ

    ββββ telescopeEnergy + Position

    Paul trap

    Recoil ion detectorTOF + Position

    Detection Setup

    DSSSD +Plastic scintillator

    MCP +Delay lines

  • Ion beam from LIRAT: . E = 10 keV

    . ~ 1.5 108 6He+/s (~20 pA)

    . from 100 pA to 100 nA 12C2+ ions

    No significant effect of 12C2+ beam contamination on RFQ transmission

    slit FH13D (mm)

    Inte

    nsit

    y(p

    ps)

    6He experiment (July 2006) : Preliminary results

  • Coincidence rate: ~ 0.5 per second

    105 coincidence events

    � statistical error < 2 %

    � study of systematic effects

    Transmissions : RFQ = 3 %transfert = 2 %trapping = 9 %

    ~ 700 trapped ions(extraction rate: 1OO ms)

    6He experiment (July 2006) : Preliminary results

  • Signal/Background ratio ≈ 10

    ‘background’ = accidental coincidencescoincidence events from gaz or implanted ions

    6He experiment (July 2006) : Preliminary results

  • Cinematic of the decay : Reconstruction of the neutrino mass

    - Global shape of the Mν � identification of other decay sources

    - Width = resolution of the detection set-up

    Te , TOF, θθθθ ���� Mνννν

    - a = -1/3 - realistic ion cloud

    space phase- detectors resolution- no RF voltage- no β scattering

    Simulation parameters:

    6He experiment (July 2006) : Preliminary results

  • Cinematic of the decay : Reconstruction of the neutrino mass

    - Global shape of the Mν � identification of other decay sources

    - Width = resolution of the detection set-up

    accidental coincidences+…

    Te , TOF, θθθθ ���� Mνννν

    6He experiment (July 2006) : Preliminary results

  • Cinematic of the decay : Reconstruction of the neutrino mass

    ���� Selection of events coming from the trap

    Ion TOF (ns)

    ββ ββen

    ergy

    (keV

    )

    6He experiment (July 2006) : Preliminary results

  • Cinematic of the decay : Reconstruction of the neutrino mass

    ���� Selection of events coming from the trap

    Signal/Background ratio ≈ 100

    2/1 cMeVM

  • Cinematic of the decay : Reconstruction of the neutrino mass

    ���� Selection of events coming from the trap 1

  • � a value extracted from adjustement with TOF spectrum

    Experimental data:

    - Substraction of accidental events

    - Signal in DSSSD

    - a = -1/3 - realistic ion cloud space phase- detectors resolution- no RF voltage- no β scattering

    Simulation parameters:

    6He experiment (July 2006) : Preliminary results

  • 6He experiment (July 2006) : Preliminary results

  • Need for a complete simulation of the experiment: in progress…

    6He experiment (July 2006) : Preliminary results

  • Experimental data:

    4 different RF phases

    … Have to be taken into account in the simulation

    ~ 20 ns

    6He experiment (July 2006) : Preliminary results

  • ► Tests with 6Li+ ions: (off-line source – E= 10 keV)

    - more than 105 trapped 6Li+ ions (incoming intensity: 85 pA)

    - global efficiency ~ 0.2 % (extraction rate = 100 ms)

    � factor of 40 better than in 6He experiment

    � 4. 106 coincidence events ???

    Improvements: overall efficiency

    ► New PM for β detection � - factor of 2 on energy resolution

    - linear response

  • Improvements: detection set-up

    ► Control of the position of MCP (and β detector) relative to the trap

    �Shift – distorsion of the TOF spectrum

    1 mm ↔↔↔↔ 5 ns for Tion =1.4 keV

  • ► Control of the position of MCP (and β detector) relative to the trap

    � Asymetry of events distribution

    Improvements: detection set-up

  • LPCTrap facility :

    - Efficient Cooling and Bunching of light ions (buffer gas : H2)

    - Coupling to the transparent Paul trap� precision measurement in β decay

    6He experiment July 2006

    105 coincidence events

    � first estimation of a with 2% statistical errorand investigation of systematic effects

    data analysis & simulation in progress

    Next 6He beam time: scheduled for 2007-2008

    Conclusion

  • e- shake-off measurement

    eeLiHe ν++→−+ ?6

    3

    6

    2

    For 6He atoms: P(1+) ≈ 90% (Carlson et al., 1963)

    For 6He+ ions: no measured value for P(2+) & P(3+)

    � Influence of RF field on the recoil ion trajectory

    Measurement by TOF between β and accelerated recoil ion

    β detector

    ion detector

    MCP10 kV

  • LPC: Gilles BanDominique DurandFlorian DuvalXavier FléchardMustafa HerbaneMarc LabalmeEtienne LiénardFrançois MaugerAlain MéryOscar Naviliat-CuncicDaniel Rodriguez+technical staff

    GANIL: Bertrand JacquotJean-Charles Thomas