The Electromagnetic Calorimeter of the Babar...

19
The Electromagnetic Calorimeter of the Babar Detector Caltech 26 March 2002 Martin Kocian (SLAC) for the EMC Group and the Babar Collaboration . The Babar Detector . The Babar Calorimeter . Calibration . Performance Martin Kocian Calor02 26 March 2002

Transcript of The Electromagnetic Calorimeter of the Babar...

  • The Electromagnetic Calorimeter

    of the

    Babar Detector

    Caltech

    26 March 2002

    Martin Kocian (SLAC)

    for the EMC Group and the Babar Collaboration

    . The Babar Detector

    . The Babar Calorimeter

    . Calibration

    . Performance

    Martin Kocian Calor02 26 March 2002

  • The B-factory at SLAC

    • Asymmetric B factory:• e−-beam at 9 GeV, e+-beam at 3.1 GeV• e+e− −→ Υ(4s) −→ BB̄• Peak luminosity presently at 4.5 · 1033 cm−2s−1• Data recorded until now: 75 fb−1

    Martin Kocian Calor02 26 March 2002

  • The BaBar Experiment

    CalorimeterElectromagnetic

    Drift Chamber

    DIRC

    Silicon Vertex Detector

    InstrumentedFlux Return

    • Measurement of CP violation in B decays• The calorimeter’s main task is the reconstruction of:• Electrons

    - “Golden channel” for sin(2β):B0 → J/ΨKs, J/ψ → e+e−- Flavor tagging

    • π0s - determination of sin(2α) : B0 → π0π0• Photons

    Martin Kocian Calor02 26 March 2002

  • Calorimetry goals

    • High efficiency for photons is needed for B recon-struction:

    π0 reco efficiency

    B reco efficiency

    • High lightyield is needed• Description of the resolution:

    σEE

    = a4√

    E(GeV )⊕ b

    • The constant term contains:• Calibration error• Crystal nonuniformity• Leakage

    Martin Kocian Calor02 26 March 2002

  • Calorimeter Overview

    11271375920

    1555 2295

    2359

    1801

    558

    1979

    22.7˚

    26.8˚

    15.8˚

    Interaction Point 1-20018572A03

    38.2˚

    ExternalSupport

    • 6580 CsI(Tl) crystals• Barrel: 48 rings in θ, 120 crystals per ring• Forward Endcap: 8 rings in θ, 80/100/120 crystals

    per ring

    • Angular coverage: 126◦ in θ, 360◦ in φ• Crystals are non-projective in θ by 14 mrad (45 mrad

    in the barrel/endcap transition region)

    • Gap of ca. 2 mm between barrel and endcap, fullycovered by non-projectivity

    Martin Kocian Calor02 26 March 2002

  • Calorimeter Support Structure

    IOB

    Aluminum Support Cylinder

    Electronic Mini–Crates

    Aluminum RF Shield4 m

    0.9 m0.48 m

    3-20018572A06

    Cooling Channels

    Cu Heat Sink

    Bulkhead

    Fan OutBoard

    ADBs

    Detail of Mini–Crate

    Aluminum Strongback

    MountingFeatures

    Cableway

    Carbon Fiber Tubes

    Detail of Module

    • Barrel• 280 carbon fiber modules• 7 modules along θ, 40 along φ• 7 crystals in θ, 3 in φ per module

    • Endcap• 20 carbon fiber modules• 41 crystals per module (8 in θ, 4/5/6 in φ)

    =⇒ Readout electronics: see I. Eschrich’s talkMartin Kocian Calor02 26 March 2002

  • Crystal Housing

    CsI(Tl) Crystal

    Diode Carrier Plate

    Silicon Photo-diodes

    Preamplifier BoardFiber Optical Cable

    to Light Pulser

    AluminumFrame

    TYVEK(Reflector)

    Mylar(Electrical Insulation)

    Aluminum Foil

    (R.F. Shield)

    CFC Compartments(Mechanical

    Support)

    OutputCable

    11-20008572A02

    • Trapezoids: Front 4.7 x 4.7 cm2, back 6.1 x 6.0 cm2• Length between 16.0 X0 (bwd) and 17.5 X0 (fwd)• crystal is held in place by 300 µm of CFC• 2 x 160 µm Tyvek wrapping for reflection and tuning• Aluminum foil/Mylar wrapping• Lightyield was typically 7300 photoelectrons/MeV

    during QC

    • 2 photodiodes glued with epoxy onto the crystal viaa polystyrene coupling plate - area 2 x 2 cm2

    • 2 preamps in readout box above crystalMartin Kocian Calor02 26 March 2002

  • Calibration Overview

    • There are two kinds of calibrations:• Inter crystal calibration:• The crystals have different lightyields• The crystals have different uniformities

    −5%

    +5%

    −2%

    +2%

    back front

    PD

    PMT

    low energy shower

    high energy shower

    !!! Lightyield and uniformity change with time throughradiation damage

    =⇒ Radiation damage studies: see T. Hryn’ova’s talk• Shower corrections:• Edeposited 6= Etrue• The deposited energy depends on the leakage that

    is a function of geometry and material in the de-tector

    Martin Kocian Calor02 26 March 2002

  • EMC Calibration Overview

    Properties of the different calibrations

    Rad Bhabha 0.3 − 9 GeV1 − 2 days

    15 min 0 − 13 GeVElectronics

    Duration Energy scale Single Xtal Absolute

    3−9 GeV12 h

    3 min 0 − 13 GeVLight Pulser

    Pi 0

    Bhabha

    4 h

    Source 1/2 h 0.00613 GeV

    0.03 − 3 GeV

    =⇒ The lightpulser calibration and the electronics cali-bration will be covered in detail in I. Eschrich’s talk

    Martin Kocian Calor02 26 March 2002

  • Source Calibration

    • Calibration uses 6.13 MeV photons from16N →16 O∗ →16 Oγ

    • 16N has a lifetime of 7 seconds• A fluid, activated by neutrons from a generator, cir-

    culates through a system of tubes in front of thecrystals

    • All crystals are calibrated with this method• Resolution of the constants: 0.33 %• Source spectrum with two escape peaks:

    Martin Kocian Calor02 26 March 2002

  • Bhabha Calibration I

    e- e+

    E

    E = 9 GeV

    E = 3.1 GeVθ

    +

    -

    +

    E-

    θ

    calorimeter

    • Single crystal calibration to Eexpecteddeposited (from MC)• Find constants ci so that

    χ2 = ∑events(∑

    i ciεi−Eexpecteddeposited)2σ2

    becomes minimal

    Martin Kocian Calor02 26 March 2002

  • Bhabha Calibration II

    • Minimization of χ2 yields a system of linear equa-tions with a 6580 x 6580 matrix−→ numerical solution

    • Fit with log-normal distribution

    Eσ =E

    Eσ =E

    Eσ =E

    Eσ =E

    1.8 % 1.95 %

    2.1 % 2.4 %

    BaBar

    BaBar

    BaBar

    BaBar

    Martin Kocian Calor02 26 March 2002

  • π0 Calibration

    • Deposited energy → Particle’s original energy• Material in front of the calorimeter:

    (rad)θ Polar Angle0 0.5 1 1.5 2 2.5 3

    ) 0

    Mat

    eria

    l (X

    10-2

    10-1

    1

    EMC

    DRC

    DCH

    SVT

    0.7 X

    0.3 X0

    0

    • Use known π0-mass to correct the photon energies:mπ0 =

    √E1E2(1− cos θ), θ:angle between photons

    • π0 spectra for different decay types:

    GeV GeVGeV GeV

    Martin Kocian Calor02 26 March 2002

  • π0 Calibration

    • Make mass plots in bins of log10(E) and cos(θ)200 − 250 MeV150 − 200 MeV125 − 150 MeV100 − 125 MeV

    • Interpolate between bins with polynomials

    ln(

    m(p

    i0)

    / m(g

    amm

    a ga

    mm

    a))

    ln(

    m(p

    i0)

    / m(g

    amm

    a ga

    mm

    a))

    cos (theta)ln(E (GeV))

    • Calibration function Monte Carlo (Run 1 cuts)• Calibration function data Run 1• Calibration function data Run 2• Data points after correction Run 2

    Martin Kocian Calor02 26 March 2002

  • π0 and η resolution

    m/GeV0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

    Ent

    ries

    0

    2000

    4000

    6000

    8000

    10000

    BaBar

    mass = 134.9 MeV

    sigma = 6.5 MeV

    (GeV)γγm0.3 0.4 0.5 0.6 0.7 0.8

    Ent

    ries

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    > 1000 MeVγγ Mass Eη

    BaBar

    -mass = 547.0 MeVη

    -width = 15.5 MeVη

    Martin Kocian Calor02 26 March 2002

  • Energy resolution

    / GeVγE10-2

    10-1

    1

    Del

    ta E

    / E

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    γγ → 0πγγ → η

    Bhabhasγ ψ J/→ cχ

    radioact. SourceMonteCarlo+BGMonteCarlo

    Martin Kocian Calor02 26 March 2002

  • Angular resolution

    / GeVγE0 0.5 1 1.5 2 2.5 3

    Del

    ta T

    heta

    (ra

    d)

    0

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.0142σ +

    1/2/E1σ) = θ(σ

    0.04) mrad± = (4.16 1σ

    0.00) mrad± = (0.00 2σ

    γγ → 0πγγ → η

    MonteCarlo+BG

    MonteCarlo

    Martin Kocian Calor02 26 March 2002

  • Electron Identification

    • The calorimeter is used for electron identificationby cutting on

    • ECalorimeter/pTrack• shower shape

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.10.20.30.40.50.60.70.80.9

    1

    0

    0.002

    0.004

    0.006

    0.008

    0.01

    o < 80labθ < o20

    - e-π

    BABAR

    [GeV/c]labp

    Effi

    cien

    cy

    • Electron efficiency• π-mesons misidentified as electrons

    Martin Kocian Calor02 26 March 2002

  • Conclusion

    • The Babar Electromagnetic Calorimeter has beenworking reliably for the past 2.5 years

    • Performance is close to expectations• Frequent calibration is necessary to compensate for

    changes in lightyield

    • The calorimeter is a crucial component for doingphysics with Babar

    Signal for B0 → J/ψKs with Ks → π0π0

    Martin Kocian Calor02 26 March 2002