of 29/29
The Dynamics of the Pendulum By Tori Akin and Hank Schwartz
• date post

18-Dec-2015
• Category

## Documents

• view

215

1

Embed Size (px)

### Transcript of The Dynamics of the Pendulum By Tori Akin and Hank Schwartz.

• Slide 1
• The Dynamics of the Pendulum By Tori Akin and Hank Schwartz
• Slide 2
• An Introduction What is the behavior of idealized pendulums? What types of pendulums will we discuss? Simple Damped vs. Undamped Uniform Torque Non-uniform Torque
• Slide 3
• Parameters To Consider m-mass (or lack thereof) L-length g-gravity -damping term I -applied torque Result: v=-g*sin()/L =v
• Slide 4
• Methods Nondimensionalization Linearization XPP/Phase Plane analysis Bifurcation Analysis Theoretical Analysis
• Slide 5
• Nondimensionalization Let =sqrt(g/L) and d /dt= =vv v=-g*sin()/L -sin()
• Slide 6
• Systems and Equations Simple Pendulum =v v=-sin() Simple Pendulum with Damping = v v=-sin()- v Simple Pendulum with constant Torque = v v=-sin()+I
• Slide 7
• Hopf Bifurcation Simple Pendulum with Damping = v v=-sin()- v Jacobian: Trace=- Determinant=cos( ) Vary from positive to zero to negative
• Slide 8
• Slide 9
• Slide 10
• Slide 11
• The Simple Pendulum with Constant Torque and No Damping The theta null cline: v = 0 The v null cline: =arcsin(I) Saddle Node Bifurcation I=1 Jacobian: = v v=-sin()+I
• Slide 12
• Slide 13
• Slide 14
• Driven Pendulum with Damping = v v = -sin() v + I Limit Cycle The theta null cline: v = 0 The v null cline: v = [ I sin()] / I = sin() and as cos 2 () = 1 sin 2 () we are left with cos() = (1-I 2 ) Characteristic polynomial- 2 + + (1-I 2 ) = 0 which implies = { [ 2 - 4(1-I 2 ) ] } / 2 Jacobian:
• Slide 15
• Slide 16
• Slide 17
• Slide 18
• Slide 19
• Homoclinic Bifurcation
• Slide 20
• Slide 21
• Slide 22
• Infinite Period Bifurcation
• Slide 23
• Slide 24
• Slide 25
• Bifurcation Diagram
• Slide 26
• Non-uniform Torque and Damped Pendulum = 1 = v v = -sin() v + Icos()
• Slide 27
• Slide 28
• Double Pendulum
• Slide 29
• Results Basic Workings Various Oscillating Systems Hopf Bifurcation-Simple Pendulum Homoclinic Global Bifurcation-Uniform Torque Chaotic Behavior Saddle Node Bifurcation Infinite Period Bifurcation Applications to the real world Thank You!