SYNSPEC - Masaryk University · 2017. 2. 9. · Example tun /home/krticka/prakaf/synspec/synspec...

20
SYNSPEC SYNSPEC – p. 1

Transcript of SYNSPEC - Masaryk University · 2017. 2. 9. · Example tun /home/krticka/prakaf/synspec/synspec...

  • SYNSPEC

    SYNSPEC – p. 1

  • SYNSPEC

    calculation of synthetic spectra of stellaratmospheres and disks

    input model atmospheres TLUSTY or ATLAS

    Hubeny, I., Štefl, S., Harmanec, P., 1985, Bull.Astron. Inst. Czechosl. 36, 214

    http://www.physics.muni.cz/˜krticka/synspec49.tgz

    SYNSPEC – p. 2

  • Equation to solve

    radiative transfer equation

    µ∂

    ∂zI(z,µ,ν) = η(z,ν)− χ(z,ν)I(z,µ,ν)

    fixed structure of atmosphere

    SYNSPEC – p. 3

  • Files with the sourcecode

    http://nova.astro.umd.edu/Synspec49/synspec.html

    synspec45.f code

    PARAMS.FOR some basic settings

    LINDAT.FOR, MODELP.FOR

    rotin3.f code for the rotational convolution

    compilation:ifort [-O3 ] synspec45.f

    SYNSPEC – p. 4

  • Input files

    http://nova.astro.umd.edu/

    file 1: the same as in TLUSTY

    file 5: the same as in TLUSTY

    files of the model ions (as in TLUSTY)

    nonstandard settings (as in TLUSTY)

    file 55: basic parameters of the calculation

    file 56: change of the chemical composition

    file 19: line list

    file 8: input model atosphereSYNSPEC – p. 5

  • File 55 (fort.55)

    0 30 1 !IMODE, IDSTD, IPRIN0 0 0 0 !INPUT MODEL, INTRPL, ICHANGE, ICHEMC0 !IOPHLI0 0 0 0 1 !IFREQ, INLTE, ICONTL, INORIG, IFHE20 0 0 0 0 0 0 !ILYCS,IBVCS,IHE1,IHE4471,IHE2UV,IHE2VI,IHE2RE4000 7000 10 10 1d-6 0.001 ! ALAM0,ALAST,CUTOF0,

    CUTOFFS,RELOP,SPACE2.0 ! turbulent velocity (in km/s)

    SYNSPEC – p. 6

  • Input parameters

    IMODE: mode of calculationIDSTD: index of the standard depth (unity opticaldepth)IPRIN: amount of outputINPUT MODEL: (0=ATLAS, 1=TLUSTY)IOPHLI: treatment of hydrogen linesINLTE: treatment of NLTEALAM0,ALAST: wavelength limitsRELOP: minimum relative contribution of linesVTB: turbulent velocity in km/s

    SYNSPEC – p. 7

  • Example tun

    /home/krticka/prakaf/synspec/synspec

    file syn:DOMA=/home/krtickaJOBID=$1MODEL=$2LINES=$3ln -s $MODEL.7 fort.8ln -s $JOBID.55 fort.55ln -s $DOMA/GF/$LINES fort.19$DOMA/prakaf/synspec/synspec/synspec45 ! $JOBID.6cp fort.7 $JOBID.7cp fort.17 $JOBID.17cp fort.12 $JOBID.12cp fort.18 $JOBID.18cp fort.13 $JOBID.13cp fort.10 $JOBID.10rm fort.*

    SYNSPEC – p. 8

  • Example run

    /home/krticka/prakaf/synspec/synspec

    file syn:run syn slun.s slun gf99.datinput files slun.5, slun.7, slun.s.55,gf99.dat

    output files slun.s.6, slun.s.7,slun.s.17 ...

    SYNSPEC – p. 9

  • Output files

    file 6: basic model description

    file 7: emergent flux in lines

    file 17: emergent flux in continuum

    file 12: line identification (except H and He II)

    CGS!

    SYNSPEC – p. 10

  • File 6 (fort.6)

    general model output

    tables with input data

    error messages

    SYNSPEC – p. 11

  • File 7 (fort.7)

    wavelength-dependent emergent flux(λ – Å, Hλ – erg cm−2 s−1 Å−1)

    SYNSPEC – p. 12

  • File 17 (fort.17)

    wavelength-dependent emergent flux incontinuum(λ – Å, Hλ – erg cm−2 s−1 Å−1)

    SYNSPEC – p. 13

  • File 12 (fort.12)

    line identification table, estimate of theequivalent width, line strength (*)

    SYNSPEC – p. 14

  • Rotationalconvolution

    code rotin3.f

    input filesfile 5: parameters of the calculationfile 7, file 17 (SYNSPEC output)

    output filefile 11: convolved spectrum(rotation+instrumental)

    SYNSPEC – p. 15

  • Input file 5

    ’fort.7’ ’fort.17’ ’fort.11’ ! filenames for the70.0 0.00 0.001 ! vrot, chard, step0.03001 0.001 ! fwhm (instrumental4100 6900 1 ! lam0, lam1, irel (=0

    names of input and output files

    vrot sin i in km/s, 0., step

    FWHM of instrumental profile

    wavelength interval, absolute/relative spectrum

    SYNSPEC – p. 16

  • Example run

    file rot:JOBID=$1

    SPEK=$2

    ln -s $SPEK.7 fort.7

    ln -s $SPEK.17 fort.17

    rotin3

  • Example of visualspectrum

    0.70

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    4400 4420 4440 4460 4480 4500

    rela

    tive

    inte

    nsity

    wavelength λ [Å]

    Fe I

    Fe I

    Sc II Fe II Ti IITi II

    Ti IICa I

    Ti II

    Mg II

    Fe II Fe II Ti II

    fitobserved

    SYNSPEC – p. 18

  • Example of UVspectrum

    0

    5.0 × 10-11

    1.0 × 10-10

    1.5 × 10-10

    2.0 × 10-10

    2.5 × 10-10

    1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

    flux

    [erg

    cm

    -2 s

    -1 A

    -1]

    wavelength λ [ ° A]

    Si II Si II

    C II

    Si II Al II Al II Mg IIFe II Fe IIFe II Fe II

    prediction φ=0.005observation (IUE)

    SYNSPEC – p. 19

  • Abundance analysis

    minimalization

    χ2 =∑

    λi

    (

    Iobsi

    − Isyni

    )2

    σ2i

    SYNSPEC – p. 20

    SYNSPECEquation to solveFiles with the source codeInput filesFile 55 (fort.55)Input parametersExample tunExample runOutput filesFile 6 (fort.6)File 7 (fort.7)File 17 (fort.17)File 12 (fort.12)Rotational convolutionInput file 5Example runExample of visual spectrumExample of UV spectrumAbundance analysis