Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands...

23
Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen , Cody W. van Dijk, Samantha Harder and Jennifer van Wijngaarden Department of Chemistry, University of Manitoba, Winnipeg, Canada

Transcript of Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands...

Page 1: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν29 and ν30 bands

Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer van Wijngaarden

Department of Chemistry, University of Manitoba, Winnipeg, Canada

Page 2: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

Ring puckering potential of silacyclobutane (SCB)

2

0+0-

1+1-

Ring puckering angle θ

440

cm-1

2+2-

E

Si

C

C

C

a

b

β

Page 3: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

Previous low resolution work

3

W.C. Pringle, J. Chem. Phys. 54,4979 (1971)

MW

J. Laane and R. C. Lord, J. Chem. Phys. 48, 1508 (1968)A.A. Al-Saadi and J. Laane, Organometallics, 27, 3435 (2008)

IR

Page 4: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

4

Previous high resolution MW work

0-0+

J. van Wijngaarden, Z. Chen, C.W. van Dijk and J.L. Sorensen, J. Phys. Chem. A 115, 8650 (2011)

 

0+0-

1+1-

Ring puckering angle θ

440

cm-12+

2-E

FTMW spectrum

a-type

Page 5: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

Canadian Light Source, CLS

Page 6: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

NH

D. W. Tokaryk and J. van Wijngaarden, Can J. Phys. 87, 443-448 (2009).

Page 7: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

Far-infrared experiments at CLS

7

LiAlH4

110 ˚C

Exp. Parameter FIR set up

Spectrometer Bruker IFS 125 HR FTIR

Aperture 1.3 mm

Resolution

(instrumental)

0.000959 cm-1 (360-500

cm-1)

0.001920 cm-1 (100-200

cm-1)

Absorption pathlength 72 m

Cell temperature 298 K

Page 8: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

380 400 420

cm-1

440

8

The ν29 SiH2 rocking mode

6 μm Mylar BS/GeCu Detector

528 interferograms, ~53 h

448 mTorr

Page 9: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

392.9 391.1 391.3

cm-1

391.4391.2391.0

How can we assign them?

9

Page 10: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

Loomis-Wood plot of the ν29 band: c-type progressions

10

Page 11: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

11

oeoo

eoee

A2A1

B2B1

oeoo

eoee

A2A1

B2B1

oeoo

eoee

B2B1

A2A1

oeoo

eoee

B2B1

A2A1

Ring inversion (B1)

ν29 SiH

2 rocking mode (B

1)

ν29 SiH

2 rocking mode (B

1)

0-(B1) 0+ (A1)

ν29+ (B1)

c-type transitions

c-type transitionsν29

- (A1)

Page 12: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

392.9 391.1 391.3

cm-1

391.4391.2391.0

12

29 27 2 30 28 2

30 26 4 31 27 4

30 25 5 31 26 5

28 28 0 29 29 031 24 7 32 25 8

29 27 2 30 28 2

31 23 8 32 24 829 26 3 30 27 3

30 25 5 31 26 5

28 28 0 29 29 0

30 24 6 31 25 6

28 27 1 29 28 1

31 23 8 32 24 829 26 3 30 27 3

29 25 4 30 26 4

30 24 6 31 25 6

28 27 1 29 28 1

30 23 7 31 24 7

0- → ν29 -0+ → ν29 +

Page 13: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

Loomis-Wood plot of the ν29 band: c-type progressions

13

0- → ν29 -0+ → ν29 +

Page 14: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

14

Loomis-Wood plot of the ν29 band: a-type progressions 0- → ν29 +

0+ → ν29 -

Page 15: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

15

oeoo

eoee

A2A1

B2B1

oeoo

eoee

A2A1

B2B1

oeoo

eoee

B2B1

A2A1

oeoo

eoee

B2B1

A2A1

Ring inversion (B1)

ν29 SiH

2 rocking mode (B

1)

ν29 SiH

2 rocking mode (B

1)

0-(B1) 0+ (A1)

ν29+ (B1)

c-type transitions

c-type transitions

a-type transitions

a-ty

pe tr

ansit

ions

ν29- (A1)

~ 6500 transitions assigned

Page 16: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

16

Loomis-Wood plot of the ν29 band: a- and c-type progressions

cm-1

0.20.10.0-0.1-0.2

0- → ν29 -0+ → ν29 +

0- → ν29 +0+ → ν29 -

Page 17: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

17

The Q branch of the ν29 band

cm-1

Exp.

Sim.

Page 18: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

18

The ν30 ring puckering mode

130 140 160cm-1

180150 170

75 μm Mylar BSSi bolometer

844 interferograms, ~42 h

1060 mTorr, 0.00192 cm-1

Page 19: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

0.0

cm-1

-0.2 -0.1 0.1 0.2

19

Loomis-Wood plot of the ν29 band: c-type progressions 0- → ν30 -

0+ → ν30 +

Page 20: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

Spectroscopic parameters for the ν29 and ν30 modes of SCB• Global fit of the ν29 and ν30 modes

• ~8,000 transitions• Ground state constants held fixed to values determined from GSCDs

20

Page 21: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

21

0 -0 +

ν29 -

0.00254798(7)

158.38466115(11)

158.1218438(2)

410.20889633(7)

410.03760177(14)

ν29 +

ν30 -

ν30 +

Energy differences in cm-1 and not to scale

Page 22: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

22

Future work : ring puckering manifold

W.C. Pringle, J. Chem. Phys. 54,4979 (1971)cm-1

90 120 180

Page 23: Synchrotron-based study of the far infrared spectrum of silacyclobutane: the ν 29 and ν 30 bands Ziqiu Chen, Cody W. van Dijk, Samantha Harder and Jennifer.

23

Acknowledgement

Dr. van Wijngaardens group:Cody van DijkSamantha Harder

Dr. Wallace Pringle (Wesleyan University) Dr. Brant Billinghurst (Canadian Light Source)