Surface-enhanced Raman Spectroscopy and Imaging with ...€¦ · J.-H. Yoon, L. Langolf, W. Xie, R....

38
J.-H. Yoon, L. Langolf, W. Xie, R. Grzeschik, E. Stepula, X. Wang, Y. Zhang, Sebastian Schlücker University Duisburg-Essen Department of Chemistry www.uni-due.de/schluecker-lab Surface-enhanced Raman Spectroscopy and Imaging with Molecularly Functionalized Noble Metal Nanoparticles Raman Workshop@ETHZ 13 th June 2018

Transcript of Surface-enhanced Raman Spectroscopy and Imaging with ...€¦ · J.-H. Yoon, L. Langolf, W. Xie, R....

  • J.-H. Yoon, L. Langolf, W. Xie,R. Grzeschik, E. Stepula,

    X. Wang, Y. Zhang, Sebastian Schlücker

    University Duisburg-Essen

    Department of Chemistry

    www.uni-due.de/schluecker-lab

    Surface-enhanced Raman Spectroscopy and Imaging with Molecularly Functionalized Noble Metal Nanoparticles

    Raman Workshop@ETHZ13th June 2018

  • ω0 ωvib

    Modulated electricfield with angular frequency ω0 ωvib+-

    ω0 ωvib-ω0 ωvib+ ω0

    Classical Description of Raman Scattering

    Induced dipole moment:

  • Nano-Antenna: Receiver and Transmitter

  • Localized Surface Plasmon Resonance (LSPR) Excitation on AuNP

  • Normal versus Surface-Enhanced Raman Scattering (SERS)

    Normal Raman:IR ∝ E2

  • The Electromagnetic Enhancement (EM) Contribution

    SERS:ISERS ∝ │EL(ω0)│2

    E∝ 1/d3

    ∝ 1/d12 Sensitivity

    · │EL(ωR)│2 ≈ E4

    Surface selectivity

    Normal versus Surface-Enhanced Raman Scattering (SERS)

  • A Short History of Surface-enhanced Raman Scattering (SERS)

    1973 - First observation (Fleischmann) 1977 - First explanation & quantitative measurement (Van Duyne)1978 - Electromagnetic model for SERS (Moskovits)1997 - First observation of single-molecule SERS (Nie, Kneipp)

    SERS Enhancement Factor (EF):SERS Signal/Number of Molecules on Surface

    Normal Raman Signal/Number of Molecules in Solution

    EM = plasmonic (up to ~1011) × CM (non-plasmonic up to ~102-3)

  • SERS labels (nanotags)

    NP

    = Raman label= Raman reporter

    SERSlabel

    vs. Label-free

    NP

    = analyte moleculein solution

    SERS Applications with Noble Metal Colloids

    • Detection of Analytesbiomolecules, drugs, explosives, food components, pharmaceuticals, pigments (e.g., in paintings)

    • Chemical Reaction Monitoring

    • Immunoassays• iSERS Microscopy

  • SERS Literature: From Fundamentals to Applications

    Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications

    Angew. Chem. Int. Ed. 2014, 53, 4756-4795.

  • Maximum Signal Enhancement: Dimers for Ultrasensitive SERS

    DimerMonomer

    Hot SpotDependent on Gap Distance

  • Dimers: Generating a HOT SPOT

    Inter-gap

    Intra-gap

    Crevice

  • Physical Chemistry I @ UDE

    Precision Plasmonics

    SERS nanotags/labelsimmuno-SERS (iSERS)

    Chemical Energy Conversion

    Small 2018

    Angew. Chem. 2009

    Chem. Comm. 2014

    Small 2010

    Nanoscale 2013

    Small 2011

    PCCP 2015Analyst 2016

    Anal. Chem. 2018

    Chem. Comm. 2012 JACS 2011

    JACS 2013

    Angew. Chem. 2016

    Nature Comm. 2017

    Nature Comm. 2015

    Anal. Chem. 2017

  • Theory: Ideal Dimers of Gold Nanospheres

    Plasmon Hybridization(cf. LCAO theory)

    Nordlander et al.

    kE

    Two spheres separated by a very small defined gap

  • Towards Ideal Dimers: Experimental Challenges

    Colloidal AuNPs

    Gold nanoparticles are not perfectly spherical

    but are nanocrystals

    NPs by EBL

    kE

    Two spheres separated by a very small defined gap

    Halas et al. Nano Lett. 2013, 13, 3281.

  • Non-Spherical Particles with Controlled Gap Distance

    Single particle dark fieldscattering spectra

    Controlled short gap distance:C8 dithiol (ca. 1.3 nm)

    Non-idealdimers

  • Precision Plasmonics: Ideal Dimers of Gold Nanospheres

    Non-idealdimers

    idealdimers

  • Precision Plasmonics: Ideal Dimers of Gold Nanospheres

    idealdimers

    Small 2018

  • Correlative Single-Particle Rayleigh/SERS Imaging in Suspension

    Rayleigh

    Raman

    Anal. Chem. 2018

  • Single-Particle SERS of Dimers in Suspension

    100 ms / frame

    Rayleigh

    Raman Raman

    Rayleigh

    10 ms / frame

    Anal. Chem. 2018

  • Summary 1: Precision Plasmonics with AuNP Dimers

    Correlative Rayleigh/SERS video rate imaging of single NPs in suspension

    uniform structure (gap morphology) uniform scattering spectra

    2: Rayleigh/Mie

    1: Raman orFluorescence

    100 % (Ref.)

    x % (?!)

  • Physical Chemistry I @ UDE

    Precision Plasmonics

    SERS nanotags/labelsimmuno-SERS (iSERS)

    Chemical Energy Conversion

    Small 2018

    Angew. Chem. 2009

    Chem. Comm. 2014

    Small 2010

    Nanoscale 2013

    Small 2011

    PCCP 2015Analyst 2016

    Anal. Chem. 2018

    Chem. Comm. 2012 JACS 2011

    JACS 2013

    Angew. Chem. 2016

    Nature Comm. 2017

    Nature Comm. 2015

    Anal. Chem. 2017

  • Applications of SERS with Plasmonic Nanoparticles

    Label-free SERS

    NP

    = analyte moleculein solution

    SERS NP labels = Nanotags

    NP

    = Raman label= Raman reporter molecule

    SERSlabel

    vs.

    vs.

  • Spectral Multiplexing: Small Width of Raman Peaks

    Nanoscale 2014

  • Spectral Multiplexing with SERS Labels

    Detection of multiple labelsin a single measurement!

    # 1label

    # 2 label

    # 3 label

    # 4 label

    Wavenumber (cm-1)

    Anal. Bioanal. Chem. 2009

  • SERS Multiplexing: Quantitative 6-plex

    400 600 800 1000 1200 1400 1600 18000.0

    0.2

    0.4

    0.6

    0.8

    1.0 Mixture (measured) Mixture (calculated) Difference

    norm

    . SER

    S In

    tens

    ity

    wavenumber [cm-1]

    BMBATFMBATN MMTAA MNBAMMC+ + + + +111 1 11: : : : :

  • Quantitative 6-Color SERS Experiments (Cuvette)

    1 2 3 4 50

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    1:1:1:1:1:1 1:1:1:3:3:3 1:3:1:3:1:3 3:1:3:1:3:1 3 :3:3:1:1:1

    J. Raman Spectrosc. 2016

  • Example: Benign vs. Cancerous Prostate Biopsies

    Benign: (+)-P63 (tumor suppressor; cancer-specific)

    Cancerous: (-)-P63iSERSBF & iSERS iF iF & iSERS

  • Benign

    PSA

    P63

    +

    +

    +

    -

    Cancerous

    2-Color-iSERS: Benign vs. Cancerous Prostate Biopsies

  • Benign

    PSA

    P63

    +

    +

    +

    -

    Cancerous

    2-Color-iSERS: Benign vs. Cancerous Prostate Biopsies

  • Summary 2: SERS nanotags for iSERS microscopy & assays

    SERS label= plasmonic NP & Raman reporter& shell (optional)

    Multiplexing (colours) & Quantification

    photostable& bright (single NPs!)

    Long term goal: Personalized diagnostics(quantitative, multi-marker)

    iSERS= immuno-SERS microscopy

  • Physical Chemistry I @ UDE

    Precision Plasmonics

    SERS nanotags/labelsimmuno-SERS (iSERS)

    Chemical Energy Conversion

    Small 2018

    Angew. Chem. 2009

    Chem. Comm. 2014

    Small 2010

    Nanoscale 2013

    Small 2011

    PCCP 2015Analyst 2016

    Anal. Chem. 2018

    Chem. Comm. 2012 JACS 2011

    JACS 2013

    Angew. Chem. 2016

    Nature Comm. 2017

    Nature Comm. 2015

    Anal. Chem. 2017

  • Plasmonic NPs for Chemical Energy Conversion

    J. Am. Chem. Soc. 2011

    Au

    Pt

    BifunctionalAu/Pt/Au

    nanoraspberries

  • Microfluidic SERS: Label-free Kinetic Reaction Monitoring

    4-NTP 4-ATPNO2

    S

    NH2

    S

    NaBH4, Pt-Kat.

    NP NP

    4-ATP

    Angew. Chem. Int. Ed. 2016, 55, 13729.

  • NO2

    S

    NH2

    S

    NaBH4, Pt-Kat.

    NP NP

    NO2

    S

    NaBH4, Pt-

    NP

    Model Reaction: Nitro to Amino Reduction (NaBH4, Pt-cat.)

    4-NTP

    4-ATP

  • AgS

    NO2

    AgS

    NH2hν

    HCL

    Wavenumber / cm-1

    H2SO4

    HCl

    NaCl

    H2SO4 + NaCl

    Ram

    an In

    tens

    ity

    νs(NO2)

    νs(C−C)(4-ATP)

    νs(C−C)(4-NTP)

    H2O

    Surprise: Hydride Reduction without Hydride Reagents!

    no NaBH4 !

    4-NTP

    Ag core/Ag satellite NPs

    4-ATP

  • Hot Electrons & Photorecycling (AgX)

    Formally: Hydride reduction without hydridesH- equivalent in protic environment: H- = H+ + 2e-

    -

    Nature Comm. 2015

  • Hot Electrons Drive Nano-Localized Chemistry

    Nature Comm. 2017

    d)

  • Plasmon

    Radiative channelScattering

    Non-radiative channel

    Electron-phonon coupling

    Heat

    Hot electrons

    Absorption

    Charge carrier generation

    Label-freeSERSOR

    iSERS labels

    ReductionChemistry;

    Photorecycling

    Photothermaleffect

    Decay

    Summary 3: from label-free SERS to plasmonic chemistry

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38