Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... ·...

11
06 Supply air nozzles 252 IMP Klima Supply air nozzles

Transcript of Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... ·...

Page 1: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

Supply air nozzles

IMP Klima

Page 2: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

IMP Klima

Page 3: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

Software: KLIMA ADE 5.4

IMP Klima

VŠ-1

VŠ-4

VŠ-5

Page 4: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

IMP Klima

Page 5: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

φd

φD

1

φC

φD

2

b

Supply air nozzle type:

Size:

Pcs:

20 40 52 60 46 0.00025

50 100 116 100 108 0.00181

100 200 220 160 210 0.00785

140 250 290 250 270 0.01496

160 250 290 250 270 0.01960

250 400 440 350 420 0.04830

IMP Klima

Page 6: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

d

A

x’ o

x o

Air jet core

d

A

A≥10d

L

A ef

v o= (m/s)Q s

x o= 0.946 x’ o + 3.47 d

20°

x o

dm =

φ v Lv o

i= 2mL

d

0.180

0.155

0.150

0.145

0.145

0.150

L=d

+d

vO

- 0.63 (m)

m 0.128 vL

Discharge air velocity (velocity in the air jet core)

Air flow rate per single nozzle

Effective nozzle cross-section area

Desired velocity at the throw distance L

Desired throw distance

Supply air nozzle turbulence number

Maximum difference between the jet core temperature and the room temperature

Temperature difference between supply air and room air

Induction, i. e. the ratio between the total air jet flow rate and supply air flow rate

Distance between nozzles

Acceleration of gravity

Nozzle diameter

Room air absolute temperature

IMP Klima

Page 7: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

8 9 10 11 12 13 14

20

22

24

26

28

30

32

34

Vo(m/s)

L WA(dB(A))

L -

+

+y

-y∆ tL

∆ tZ

y = 0.33d · m · Ar (m)L

d

3

[ ]

Ar = d · ∆ tZ · g

vo

2 ·Tp

∆ tL

∆ t= 3

· d

4 m · Loz.

∆ tL = 3 · d · ∆ tZ (

0C)4 m · L

oz.

IMP Klima

Page 8: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

∼20°

b’

Ab x h

x 2

L cel

φd

h’

A<4d

L

A

Q o

x o

v o

v 2 v L

m

dx o=

QŠ x n supply air flow rate

Number of nozzles in a block

Air flow rate at x2

Air velocity at x2

Air jet width at x2

Air jet height at x2

Throw distance of the combined air jet

Total throw distance

Air flow rate at the throw distance L

x2 = 9.5 · A - (m)

d

2[ ]

Q2 = · Q0

2x2

x0

m3

s[ ]

b = b’ + 0.2x2 (m)

h = h’ + 0.2x2 (m)

F2 = b · h (m

2)

v2 = (m/s)

Q2

F2

vL = (m/s)

v0 · d · √n

m · L

3

L = (m)v0 · d · √n

m · vL

3

Lcel = L + X2 (m)

i =Qcel

Q0

Qcel = 2Q2

3

v0 · d · √n

m · vL

IMP Klima

Page 9: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

+

-

L

φd

m<4d

x2

+y

-yv

2

m

dx

o =

b = h = a

F2 = a ²

b = h = d

F2 = π x d ² / 4

m = 0.20

y = 0.33 · m · Ar (m)L

m

3

[ ]

Ar = d · ∆ tZ · g

v2

2 · Tp

y = 0.4h · √m · Ar ·L

m

3

[ ]

Ar = g · h · ∆ tZ

v2

2 · Tp

IMP Klima

Page 10: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

2 3 4 5 6 7 8

150

100

90

80

70

60

50

40

30

20

15

1010

15

20

30

40

50

60

70

80

90

100

150

876543

Size

20

Size

100

Size

140

Size

50

∆p ce

l (Pa)

∆p ce

l (Pa)

vo (m/s) vo

(m/s)

10

15

20

30

40

50

60

70

80

90100

150

87654321.51 10 15

Size

160

Size 2

50

∆p ce

l (Pa)

vo (m/s)

v o

p st

Acceleration of gravity

Circular air jet diameter at x2

Rectangular air jet height at x2

Temperature difference betwe-en supply air and room air

Absolute room air temperature

Turbulence number (m=0.25 for rectangular block and m=0.20 For circular block)

Throw distance

pst

= 1.05 v 0 (Pa)ρ

22

ρ− gostota zraka (kg/m 3)air density (kg/m3)

IMP Klima

Page 11: Supply air nozzles IMP Klimarpgtechnology.ro/wp-content/uploads/2016/10/06-Supply-air-nozzles... · The air supply nozzle calculation and selection software package comprises: ...

x’ o

x o

Air jet core

d

L

A ef

v o= (m/s)Q s

x o= 0.946 x’ o + 3.47 d

20°

x o

dm =

φ v Lv o

Required air flow rate into the hall: 15000 m³/h.

Room temperature: tp= 20 °C

Supply air temperature: tz= 26 °C

Air velocity in occupied zone: vL= 0.5 m/s

52 pcs individually installed air supply nozzles VŠ-1 of size 100 are required. Air flow rate per each air supply nozzle is calculated as follows:

v0 = 10.2 m/s

Lwa = 25 dB (A)

QS = = 292 m3/h = 0.08011 m3/s

15000

52

V0 = = = 10.2 m/s

QS

Aef

0.08011

0.00785

L = + - 0.63 =16 m0.1

0.15

0.1

0.128

10.2

0.5[ ]

Ar = = × 10-4 =

= -1.931 × 10-4

(0.1) × (-6) × (9.81)

(10.2)2 × 293

-5.885

3.047

∆ tL

∆ tZ

= 3 ×

0.1 = 0.0314 0.15 x 16

pst = 1.05 × (10.2)

2 = 62.7 Pa

1.15

2y = 0.33 × 0.1 × 0.15 × (-1.931 x 10-4) × =

= -3.9 m

16

0.1

3

[ ]

IMP Klima