indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of...

87
NNLO Event Generators for the LHC Emanuele Re Rudolf Peierls Centre for Theoretical Physics, University of Oxford MPI Munich, 19 January 2015

Transcript of indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of...

Page 1: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NNLO Event Generators for the LHC

Emanuele Re

Rudolf Peierls Centre for Theoretical Physics,University of Oxford

MPI Munich, 19 January 2015

Page 2: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Status after LHC “run I”I Scalar at 125 GeV found, study of properties begun

SMσ/σBest fit 0 0.5 1 1.5 2 2.5

0.28± = 0.92 µ ZZ→H

0.20± = 0.68 µ WW→H

0.27± = 0.77 µ γγ →H

0.41± = 1.10 µ ττ →H

0.62± = 1.15 µ bb→H

0.14± = 0.80 µ Combined

-1 19.6 fb≤ = 8 TeV, L s -1 5.1 fb≤ = 7 TeV, L s

CMS Preliminary = 0.65

SMp

= 125.7 GeVH m

parameter value0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

BSMBR

γκ

τκ

= 0.78 SM

p

= 0.88 SM

p

68% CL95% CL

-1 19.6 fb≤ = 8 TeV, L s -1 5.1 fb≤ = 7 TeV, L s

CMS Preliminary

1 ]≤ Vκ[

68% CL95% CL

I In general no smoking-gun signal of new-physics

Model e, µ, τ, γ Jets EmissT

∫L dt[fb−1] Mass limit Reference

Inclu

siv

eS

ea

rch

es

3rd

ge

n.

gm

ed

.3rd

ge

n.

sq

ua

rks

dir

ect

pro

du

ctio

nE

Wd

ire

ct

Lo

ng

-liv

ed

pa

rtic

les

RP

VO

the

r

MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q)=m(g ) ATLAS-CONF-2013-0471.7 TeVq, g

MSUGRA/CMSSM 1 e,µ 3-6 jets Yes 20.3 any m(q) ATLAS-CONF-2013-0621.2 TeVg

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q) 1308.18411.1 TeVg

qq, q→qχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-047740 GeVq

g g , g→qqχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-0471.3 TeVg

g g , g→qqχ±1→qqW ±χ01 1 e,µ 3-6 jets Yes 20.3 m(χ

01)<200 GeV, m(χ

±)=0.5(m(χ

01 )+m(g )) ATLAS-CONF-2013-0621.18 TeVg

g g , g→qq(ℓℓ/ℓν/νν)χ01 2 e,µ 0-3 jets - 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-0891.12 TeVg

GMSB (ℓ NLSP) 2 e,µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg

GMSB (ℓ NLSP) 1-2 τ 0-2 jets Yes 20.7 tanβ >18 ATLAS-CONF-2013-0261.4 TeVg

GGM (bino NLSP) 2 γ - Yes 4.8 m(χ01)>50 GeV 1209.07531.07 TeVg

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ01)>50 GeV ATLAS-CONF-2012-144619 GeVg

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ01)>220 GeV 1211.1167900 GeVg

GGM (higgsino NLSP) 2 e, µ (Z ) 0-3 jets Yes 5.8 m(H)>200 GeV ATLAS-CONF-2012-152690 GeVg

Gravitino LSP 0 mono-jet Yes 10.5 m(g )>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g→bbχ01 0 3 b Yes 20.1 m(χ

01)<600 GeV ATLAS-CONF-2013-0611.2 TeVg

g→tt χ01 0 7-10 jets Yes 20.3 m(χ

01) <350 GeV 1308.18411.1 TeVg

g→tt χ01 0-1 e,µ 3 b Yes 20.1 m(χ

01)<400 GeV ATLAS-CONF-2013-0611.34 TeVg

g→bt χ+1 0-1 e,µ 3 b Yes 20.1 m(χ

01)<300 GeV ATLAS-CONF-2013-0611.3 TeVg

b1b1, b1→bχ01 0 2 b Yes 20.1 m(χ

01)<90 GeV 1308.2631100-620 GeVb1

b1b1, b1→tχ±1 2 e,µ (SS) 0-3 b Yes 20.7 m(χ

±1 )=2 m(χ

01) ATLAS-CONF-2013-007275-430 GeVb1

t1 t1(light), t1→bχ±1 1-2 e,µ 1-2 b Yes 4.7 m(χ

01)=55 GeV 1208.4305, 1209.2102110-167 GeVt1

t1 t1(light), t1→Wbχ01 2 e,µ 0-2 jets Yes 20.3 m(χ

01) =m(t1)-m(W )-50 GeV, m(t1)<<m(χ

±1 ) ATLAS-CONF-2013-048130-220 GeVt1

t1 t1(medium), t1→tχ01 2 e,µ 2 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-065225-525 GeVt1

t1 t1(medium), t1→bχ±1 0 2 b Yes 20.1 m(χ

01)<200 GeV, m(χ

±1 )-m(χ

01 )=5 GeV 1308.2631150-580 GeVt1

t1 t1(heavy), t1→tχ01 1 e,µ 1 b Yes 20.7 m(χ

01)=0 GeV ATLAS-CONF-2013-037200-610 GeVt1

t1 t1(heavy), t1→tχ01 0 2 b Yes 20.5 m(χ

01)=0 GeV ATLAS-CONF-2013-024320-660 GeVt1

t1 t1, t1→cχ01 0 mono-jet/c-tag Yes 20.3 m(t1)-m(χ

01)<85 GeV ATLAS-CONF-2013-06890-200 GeVt1

t1 t1(natural GMSB) 2 e, µ (Z ) 1 b Yes 20.7 m(χ01)>150 GeV ATLAS-CONF-2013-025500 GeVt1

t2 t2, t2→t1 + Z 3 e, µ (Z ) 1 b Yes 20.7 m(t1)=m(χ01)+180 GeV ATLAS-CONF-2013-025271-520 GeVt2

ℓL,RℓL,R, ℓ→ℓχ01 2 e,µ 0 Yes 20.3 m(χ01)=0 GeV ATLAS-CONF-2013-04985-315 GeVℓ

χ+1 χ−1 , χ

+1→ℓν(ℓν) 2 e,µ 0 Yes 20.3 m(χ

01)=0 GeV, m(ℓ, ν)=0.5(m(χ

±1 )+m(χ

01 )) ATLAS-CONF-2013-049125-450 GeVχ±

1

χ+1 χ−1 , χ

+1→τν(τν) 2 τ - Yes 20.7 m(χ

01)=0 GeV, m(τ, ν)=0.5(m(χ

±1 )+m(χ

01)) ATLAS-CONF-2013-028180-330 GeVχ±

1

χ±1 χ02→ℓLνℓLℓ(νν), ℓνℓLℓ(νν) 3 e,µ 0 Yes 20.7 m(χ

±1 )=m(χ

02), m(χ

01)=0, m(ℓ, ν)=0.5(m(χ

±1 )+m(χ

01 )) ATLAS-CONF-2013-035600 GeVχ±

1 , χ02

χ±1 χ02→W χ

01Z χ

01 3 e,µ 0 Yes 20.7 m(χ

±1 )=m(χ

02 ), m(χ

01)=0, sleptons decoupled ATLAS-CONF-2013-035315 GeVχ±

1 , χ02

χ±1 χ02→W χ

01h χ

01 1 e,µ 2 b Yes 20.3 m(χ

±1 )=m(χ

02 ), m(χ

01)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ±

1 , χ02

Direct χ+1 χ−1 prod., long-lived χ

±1 Disapp. trk 1 jet Yes 20.3 m(χ

±1 )-m(χ

01 )=160 MeV, τ(χ

±1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ±

1

Stable, stopped g R-hadron 0 1-5 jets Yes 22.9 m(χ01)=100 GeV, 10 µs<τ(g)<1000 s ATLAS-CONF-2013-057832 GeVg

GMSB, stable τ, χ01→τ(e, µ)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ0

1

GMSB, χ01→γG , long-lived χ

01 2 γ - Yes 4.7 0.4<τ(χ

01)<2 ns 1304.6310230 GeVχ0

1

qq, χ01→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ

01)=108 GeV ATLAS-CONF-2013-0921.0 TeVq

LFV pp→ντ + X , ντ→e + µ 2 e,µ - - 4.6 λ′311=0.10, λ132=0.05 1212.12721.61 TeVντLFV pp→ντ + X , ντ→e(µ) + τ 1 e,µ + τ - - 4.6 λ′311=0.10, λ1(2)33=0.05 1212.12721.1 TeVντ

Bilinear RPV CMSSM 1 e,µ 7 jets Yes 4.7 m(q)=m(g ), cτLSP<1 mm ATLAS-CONF-2012-1401.2 TeVq, g

χ+1 χ−1 , χ

+1→W χ

01, χ

01→ee νµ, eµνe 4 e,µ - Yes 20.7 m(χ

01)>300 GeV, λ121>0 ATLAS-CONF-2013-036760 GeVχ±

1

χ+1 χ−1 , χ

+1→W χ

01, χ

01→ττνe , eτντ 3 e,µ + τ - Yes 20.7 m(χ

01)>80 GeV, λ133>0 ATLAS-CONF-2013-036350 GeVχ±

1

g→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg

g→t1t, t1→bs 2 e,µ (SS) 0-3 b Yes 20.7 ATLAS-CONF-2013-007880 GeVg

Scalar gluon pair, sgluon→qq 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt 2 e,µ (SS) 1 b Yes 14.3 ATLAS-CONF-2013-051800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale

Mass scale [TeV]10−1 1√s = 7 TeV

full data

√s = 8 TeV

partial data

√s = 8 TeV

full data

ATLAS SUSY Searches* - 95% CL Lower LimitsStatus: SUSY 2013

ATLAS Preliminary∫L dt = (4.6 - 22.9) fb−1

√s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Mass scale [TeV]

-110 1 10 210

Oth

erE

xcit.

ferm

.N

ew

quar

ksLQ

V'

CI

Ext

ra d

imen

sion

s

Magnetic monopoles (DY prod.) : highly ionizing tracksMulti-charged particles (DY prod.) : highly ionizing tracks

jjmColor octet scalar : dijet resonance, ll

m), µµll)=1) : SS ee (→L

±± (DY prod., BR(HL±±H

Zlm (type III seesaw) : Z-l resonance, ±Heavy lepton NMajor. neutr. (LRSM, no mixing) : 2-lep + jets

WZmll), νTechni-hadrons (LSTC) : WZ resonance (l

µµee/mTechni-hadrons (LSTC) : dilepton, γl

m resonance, γExcited leptons : l-WtmExcited b quark : W-t resonance,

jjmExcited quarks : dijet resonance, jetγ

m-jet resonance, γExcited quarks : qνlmVector-like quark : CC,

Ht+X→Vector-like quark : TT,missT

E SS dilepton + jets + →4th generation : b'b' WbWb→ generation : t't'th4

jjντjj, ττ=1) : kin. vars. in βScalar LQ pair (jjνµjj, µµ=1) : kin. vars. in βScalar LQ pair (jjν=1) : kin. vars. in eejj, eβScalar LQ pair (tb

m tb, LRSM) : → (RW'tqm=1) :

R tq, g→W' (

µT,e/mW' (SSM) : ttm l+jets, → tZ' (leptophobic topcolor) : t

ττmZ' (SSM) : µµee/mZ' (SSM) :

,missTEuutt CI : SS dilepton + jets + ll

m, µµqqll CI : ee & )

jjm(χqqqq contact interaction :

)jjm(χ

Quantum black hole : dijet, FT

pΣ=3) : leptons + jets, DM /THMADD BH (ch. part.N=3) : SS dimuon, DM /THMADD BH (

ttm l+jets, → t (BR=0.925) : tt t→

KKRS g

lljjmBulk RS : ZZ resonance, νlν,lTmRS1 : WW resonance, llmRS1 : dilepton, llm ED : dilepton, 2/Z1S

,missTEUED : diphoton + / llγγmLarge ED (ADD) : diphoton & dilepton,

,missTELarge ED (ADD) : monophoton + ,missTELarge ED (ADD) : monojet +

mass862 GeV , 7 TeV [1207.6411]-1=2.0 fbL

mass (|q| = 4e)490 GeV , 7 TeV [1301.5272]-1=4.4 fbL

Scalar resonance mass1.86 TeV , 7 TeV [1210.1718]-1=4.8 fbL

)µµ mass (limit at 398 GeV for L±±H409 GeV , 7 TeV [1210.5070]-1=4.7 fbL

| = 0)τ| = 0.063, |Vµ| = 0.055, |Ve

mass (|V±N245 GeV , 8 TeV [ATLAS-CONF-2013-019]-1=5.8 fbL

) = 2 TeV)R

(WmN mass (1.5 TeV , 7 TeV [1203.5420]-1=2.1 fbL

))T

ρ(m) = 1.1 T

(am, Wm) + Tπ(m) = T

ρ(m mass (T

ρ920 GeV , 8 TeV [ATLAS-CONF-2013-015]-1=13.0 fbL

)W

) = MTπ(m) - Tω/T

ρ(m mass (Tω/T

ρ850 GeV , 7 TeV [1209.2535]-1=5.0 fbL

= m(l*))Λl* mass (2.2 TeV , 8 TeV [ATLAS-CONF-2012-146]-1=13.0 fbL

b* mass (left-handed coupling)870 GeV , 7 TeV [1301.1583]-1=4.7 fbL

q* mass3.84 TeV , 8 TeV [ATLAS-CONF-2012-148]-1=13.0 fbL

q* mass2.46 TeV , 7 TeV [1112.3580]-1=2.1 fbL

)Q/mν = qQκVLQ mass (charge -1/3, coupling 1.12 TeV , 7 TeV [ATLAS-CONF-2012-137]-1=4.6 fbL

T mass (isospin doublet)790 GeV , 8 TeV [ATLAS-CONF-2013-018]-1=14.3 fbL

b' mass720 GeV , 8 TeV [ATLAS-CONF-2013-051]-1=14.3 fbL

t' mass656 GeV , 7 TeV [1210.5468]-1=4.7 fbL

gen. LQ massrd3534 GeV , 7 TeV [1303.0526]-1=4.7 fbL

gen. LQ massnd2685 GeV , 7 TeV [1203.3172]-1=1.0 fbL

gen. LQ massst1660 GeV , 7 TeV [1112.4828]-1=1.0 fbL

W' mass1.84 TeV , 8 TeV [ATLAS-CONF-2013-050]-1=14.3 fbL

W' mass430 GeV , 7 TeV [1209.6593]-1=4.7 fbL

W' mass2.55 TeV , 7 TeV [1209.4446]-1=4.7 fbL

Z' mass1.8 TeV , 8 TeV [ATLAS-CONF-2013-052]-1=14.3 fbL

Z' mass1.4 TeV , 7 TeV [1210.6604]-1=4.7 fbL

Z' mass2.86 TeV , 8 TeV [ATLAS-CONF-2013-017]-1=20 fbL

(C=1)Λ3.3 TeV , 8 TeV [ATLAS-CONF-2013-051]-1=14.3 fbL

(constructive int.)Λ13.9 TeV , 7 TeV [1211.1150]-1=5.0 fbL

Λ7.6 TeV , 7 TeV [1210.1718]-1=4.8 fbL

=6)δ (DM4.11 TeV , 7 TeV [1210.1718]-1=4.7 fbL

=6)δ (DM1.5 TeV , 7 TeV [1204.4646]-1=1.0 fbL

=6)δ (DM1.25 TeV , 7 TeV [1111.0080]-1=1.3 fbL

massKK

g2.07 TeV , 7 TeV [1305.2756]-1=4.7 fbL

= 1.0)PlM/kGraviton mass (850 GeV , 8 TeV [ATLAS-CONF-2012-150]-1=7.2 fbL

= 0.1)PlM/kGraviton mass (1.23 TeV , 7 TeV [1208.2880]-1=4.7 fbL

= 0.1)PlM/kGraviton mass (2.47 TeV , 8 TeV [ATLAS-CONF-2013-017]-1=20 fbL

-1 ~ RKKM4.71 TeV , 7 TeV [1209.2535]-1=5.0 fbL

-1Compact. scale R1.40 TeV , 7 TeV [1209.0753]-1=4.8 fbL

=3, NLO)δ (HLZ SM4.18 TeV , 7 TeV [1211.1150]-1=4.7 fbL

=2)δ (DM1.93 TeV , 7 TeV [1209.4625]-1=4.6 fbL

=2)δ (DM4.37 TeV , 7 TeV [1210.4491]-1=4.7 fbL

Only a selection of the available mass limits on new states or phenomena shown*

-1 = ( 1 - 20) fbLdt∫ = 7, 8 TeVs

ATLASPreliminary

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

Situation will (hopefully) change at 13-14 TeV. If not, then we haveto look in small deviations wrt SM: “precision physics”.

1 / 33

Page 3: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Status after LHC “run I”I Scalar at 125 GeV found, study of properties begun

SMσ/σBest fit 0 0.5 1 1.5 2 2.5

0.28± = 0.92 µ ZZ→H

0.20± = 0.68 µ WW→H

0.27± = 0.77 µ γγ →H

0.41± = 1.10 µ ττ →H

0.62± = 1.15 µ bb→H

0.14± = 0.80 µ Combined

-1 19.6 fb≤ = 8 TeV, L s -1 5.1 fb≤ = 7 TeV, L s

CMS Preliminary = 0.65

SMp

= 125.7 GeVH m

parameter value0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

BSMBR

γκ

τκ

= 0.78 SM

p

= 0.88 SM

p

68% CL95% CL

-1 19.6 fb≤ = 8 TeV, L s -1 5.1 fb≤ = 7 TeV, L s

CMS Preliminary

1 ]≤ Vκ[

68% CL95% CL

I In general no smoking-gun signal of new-physics

Model e, µ, τ, γ Jets EmissT

∫L dt[fb−1] Mass limit Reference

Inclu

siv

eS

ea

rch

es

3rd

ge

n.

gm

ed

.3rd

ge

n.

sq

ua

rks

dir

ect

pro

du

ctio

nE

Wd

ire

ct

Lo

ng

-liv

ed

pa

rtic

les

RP

VO

the

r

MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q)=m(g ) ATLAS-CONF-2013-0471.7 TeVq, g

MSUGRA/CMSSM 1 e,µ 3-6 jets Yes 20.3 any m(q) ATLAS-CONF-2013-0621.2 TeVg

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q) 1308.18411.1 TeVg

qq, q→qχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-047740 GeVq

g g , g→qqχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-0471.3 TeVg

g g , g→qqχ±1→qqW ±χ01 1 e,µ 3-6 jets Yes 20.3 m(χ

01)<200 GeV, m(χ

±)=0.5(m(χ

01 )+m(g )) ATLAS-CONF-2013-0621.18 TeVg

g g , g→qq(ℓℓ/ℓν/νν)χ01 2 e,µ 0-3 jets - 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-0891.12 TeVg

GMSB (ℓ NLSP) 2 e,µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg

GMSB (ℓ NLSP) 1-2 τ 0-2 jets Yes 20.7 tanβ >18 ATLAS-CONF-2013-0261.4 TeVg

GGM (bino NLSP) 2 γ - Yes 4.8 m(χ01)>50 GeV 1209.07531.07 TeVg

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ01)>50 GeV ATLAS-CONF-2012-144619 GeVg

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ01)>220 GeV 1211.1167900 GeVg

GGM (higgsino NLSP) 2 e, µ (Z ) 0-3 jets Yes 5.8 m(H)>200 GeV ATLAS-CONF-2012-152690 GeVg

Gravitino LSP 0 mono-jet Yes 10.5 m(g )>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g→bbχ01 0 3 b Yes 20.1 m(χ

01)<600 GeV ATLAS-CONF-2013-0611.2 TeVg

g→tt χ01 0 7-10 jets Yes 20.3 m(χ

01) <350 GeV 1308.18411.1 TeVg

g→tt χ01 0-1 e,µ 3 b Yes 20.1 m(χ

01)<400 GeV ATLAS-CONF-2013-0611.34 TeVg

g→bt χ+1 0-1 e,µ 3 b Yes 20.1 m(χ

01)<300 GeV ATLAS-CONF-2013-0611.3 TeVg

b1b1, b1→bχ01 0 2 b Yes 20.1 m(χ

01)<90 GeV 1308.2631100-620 GeVb1

b1b1, b1→tχ±1 2 e,µ (SS) 0-3 b Yes 20.7 m(χ

±1 )=2 m(χ

01) ATLAS-CONF-2013-007275-430 GeVb1

t1 t1(light), t1→bχ±1 1-2 e,µ 1-2 b Yes 4.7 m(χ

01)=55 GeV 1208.4305, 1209.2102110-167 GeVt1

t1 t1(light), t1→Wbχ01 2 e,µ 0-2 jets Yes 20.3 m(χ

01) =m(t1)-m(W )-50 GeV, m(t1)<<m(χ

±1 ) ATLAS-CONF-2013-048130-220 GeVt1

t1 t1(medium), t1→tχ01 2 e,µ 2 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-065225-525 GeVt1

t1 t1(medium), t1→bχ±1 0 2 b Yes 20.1 m(χ

01)<200 GeV, m(χ

±1 )-m(χ

01 )=5 GeV 1308.2631150-580 GeVt1

t1 t1(heavy), t1→tχ01 1 e,µ 1 b Yes 20.7 m(χ

01)=0 GeV ATLAS-CONF-2013-037200-610 GeVt1

t1 t1(heavy), t1→tχ01 0 2 b Yes 20.5 m(χ

01)=0 GeV ATLAS-CONF-2013-024320-660 GeVt1

t1 t1, t1→cχ01 0 mono-jet/c-tag Yes 20.3 m(t1)-m(χ

01)<85 GeV ATLAS-CONF-2013-06890-200 GeVt1

t1 t1(natural GMSB) 2 e, µ (Z ) 1 b Yes 20.7 m(χ01)>150 GeV ATLAS-CONF-2013-025500 GeVt1

t2 t2, t2→t1 + Z 3 e, µ (Z ) 1 b Yes 20.7 m(t1)=m(χ01)+180 GeV ATLAS-CONF-2013-025271-520 GeVt2

ℓL,RℓL,R, ℓ→ℓχ01 2 e,µ 0 Yes 20.3 m(χ01)=0 GeV ATLAS-CONF-2013-04985-315 GeVℓ

χ+1 χ−1 , χ

+1→ℓν(ℓν) 2 e,µ 0 Yes 20.3 m(χ

01)=0 GeV, m(ℓ, ν)=0.5(m(χ

±1 )+m(χ

01 )) ATLAS-CONF-2013-049125-450 GeVχ±

1

χ+1 χ−1 , χ

+1→τν(τν) 2 τ - Yes 20.7 m(χ

01)=0 GeV, m(τ, ν)=0.5(m(χ

±1 )+m(χ

01)) ATLAS-CONF-2013-028180-330 GeVχ±

1

χ±1 χ02→ℓLνℓLℓ(νν), ℓνℓLℓ(νν) 3 e,µ 0 Yes 20.7 m(χ

±1 )=m(χ

02), m(χ

01)=0, m(ℓ, ν)=0.5(m(χ

±1 )+m(χ

01 )) ATLAS-CONF-2013-035600 GeVχ±

1 , χ02

χ±1 χ02→W χ

01Z χ

01 3 e,µ 0 Yes 20.7 m(χ

±1 )=m(χ

02 ), m(χ

01)=0, sleptons decoupled ATLAS-CONF-2013-035315 GeVχ±

1 , χ02

χ±1 χ02→W χ

01h χ

01 1 e,µ 2 b Yes 20.3 m(χ

±1 )=m(χ

02 ), m(χ

01)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ±

1 , χ02

Direct χ+1 χ−1 prod., long-lived χ

±1 Disapp. trk 1 jet Yes 20.3 m(χ

±1 )-m(χ

01 )=160 MeV, τ(χ

±1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ±

1

Stable, stopped g R-hadron 0 1-5 jets Yes 22.9 m(χ01)=100 GeV, 10 µs<τ(g)<1000 s ATLAS-CONF-2013-057832 GeVg

GMSB, stable τ, χ01→τ(e, µ)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ0

1

GMSB, χ01→γG , long-lived χ

01 2 γ - Yes 4.7 0.4<τ(χ

01)<2 ns 1304.6310230 GeVχ0

1

qq, χ01→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ

01)=108 GeV ATLAS-CONF-2013-0921.0 TeVq

LFV pp→ντ + X , ντ→e + µ 2 e,µ - - 4.6 λ′311=0.10, λ132=0.05 1212.12721.61 TeVντLFV pp→ντ + X , ντ→e(µ) + τ 1 e,µ + τ - - 4.6 λ′311=0.10, λ1(2)33=0.05 1212.12721.1 TeVντ

Bilinear RPV CMSSM 1 e,µ 7 jets Yes 4.7 m(q)=m(g ), cτLSP<1 mm ATLAS-CONF-2012-1401.2 TeVq, g

χ+1 χ−1 , χ

+1→W χ

01, χ

01→ee νµ, eµνe 4 e,µ - Yes 20.7 m(χ

01)>300 GeV, λ121>0 ATLAS-CONF-2013-036760 GeVχ±

1

χ+1 χ−1 , χ

+1→W χ

01, χ

01→ττνe , eτντ 3 e,µ + τ - Yes 20.7 m(χ

01)>80 GeV, λ133>0 ATLAS-CONF-2013-036350 GeVχ±

1

g→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg

g→t1t, t1→bs 2 e,µ (SS) 0-3 b Yes 20.7 ATLAS-CONF-2013-007880 GeVg

Scalar gluon pair, sgluon→qq 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt 2 e,µ (SS) 1 b Yes 14.3 ATLAS-CONF-2013-051800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale

Mass scale [TeV]10−1 1√s = 7 TeV

full data

√s = 8 TeV

partial data

√s = 8 TeV

full data

ATLAS SUSY Searches* - 95% CL Lower LimitsStatus: SUSY 2013

ATLAS Preliminary∫L dt = (4.6 - 22.9) fb−1

√s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Mass scale [TeV]

-110 1 10 210

Oth

erE

xcit.

ferm

.N

ew

quar

ksLQ

V'

CI

Ext

ra d

imen

sion

s

Magnetic monopoles (DY prod.) : highly ionizing tracksMulti-charged particles (DY prod.) : highly ionizing tracks

jjmColor octet scalar : dijet resonance, ll

m), µµll)=1) : SS ee (→L

±± (DY prod., BR(HL±±H

Zlm (type III seesaw) : Z-l resonance, ±Heavy lepton NMajor. neutr. (LRSM, no mixing) : 2-lep + jets

WZmll), νTechni-hadrons (LSTC) : WZ resonance (l

µµee/mTechni-hadrons (LSTC) : dilepton, γl

m resonance, γExcited leptons : l-WtmExcited b quark : W-t resonance,

jjmExcited quarks : dijet resonance, jetγ

m-jet resonance, γExcited quarks : qνlmVector-like quark : CC,

Ht+X→Vector-like quark : TT,missT

E SS dilepton + jets + →4th generation : b'b' WbWb→ generation : t't'th4

jjντjj, ττ=1) : kin. vars. in βScalar LQ pair (jjνµjj, µµ=1) : kin. vars. in βScalar LQ pair (jjν=1) : kin. vars. in eejj, eβScalar LQ pair (tb

m tb, LRSM) : → (RW'tqm=1) :

R tq, g→W' (

µT,e/mW' (SSM) : ttm l+jets, → tZ' (leptophobic topcolor) : t

ττmZ' (SSM) : µµee/mZ' (SSM) :

,missTEuutt CI : SS dilepton + jets + ll

m, µµqqll CI : ee & )

jjm(χqqqq contact interaction :

)jjm(χ

Quantum black hole : dijet, FT

pΣ=3) : leptons + jets, DM /THMADD BH (ch. part.N=3) : SS dimuon, DM /THMADD BH (

ttm l+jets, → t (BR=0.925) : tt t→

KKRS g

lljjmBulk RS : ZZ resonance, νlν,lTmRS1 : WW resonance, llmRS1 : dilepton, llm ED : dilepton, 2/Z1S

,missTEUED : diphoton + / llγγmLarge ED (ADD) : diphoton & dilepton,

,missTELarge ED (ADD) : monophoton + ,missTELarge ED (ADD) : monojet +

mass862 GeV , 7 TeV [1207.6411]-1=2.0 fbL

mass (|q| = 4e)490 GeV , 7 TeV [1301.5272]-1=4.4 fbL

Scalar resonance mass1.86 TeV , 7 TeV [1210.1718]-1=4.8 fbL

)µµ mass (limit at 398 GeV for L±±H409 GeV , 7 TeV [1210.5070]-1=4.7 fbL

| = 0)τ| = 0.063, |Vµ| = 0.055, |Ve

mass (|V±N245 GeV , 8 TeV [ATLAS-CONF-2013-019]-1=5.8 fbL

) = 2 TeV)R

(WmN mass (1.5 TeV , 7 TeV [1203.5420]-1=2.1 fbL

))T

ρ(m) = 1.1 T

(am, Wm) + Tπ(m) = T

ρ(m mass (T

ρ920 GeV , 8 TeV [ATLAS-CONF-2013-015]-1=13.0 fbL

)W

) = MTπ(m) - Tω/T

ρ(m mass (Tω/T

ρ850 GeV , 7 TeV [1209.2535]-1=5.0 fbL

= m(l*))Λl* mass (2.2 TeV , 8 TeV [ATLAS-CONF-2012-146]-1=13.0 fbL

b* mass (left-handed coupling)870 GeV , 7 TeV [1301.1583]-1=4.7 fbL

q* mass3.84 TeV , 8 TeV [ATLAS-CONF-2012-148]-1=13.0 fbL

q* mass2.46 TeV , 7 TeV [1112.3580]-1=2.1 fbL

)Q/mν = qQκVLQ mass (charge -1/3, coupling 1.12 TeV , 7 TeV [ATLAS-CONF-2012-137]-1=4.6 fbL

T mass (isospin doublet)790 GeV , 8 TeV [ATLAS-CONF-2013-018]-1=14.3 fbL

b' mass720 GeV , 8 TeV [ATLAS-CONF-2013-051]-1=14.3 fbL

t' mass656 GeV , 7 TeV [1210.5468]-1=4.7 fbL

gen. LQ massrd3534 GeV , 7 TeV [1303.0526]-1=4.7 fbL

gen. LQ massnd2685 GeV , 7 TeV [1203.3172]-1=1.0 fbL

gen. LQ massst1660 GeV , 7 TeV [1112.4828]-1=1.0 fbL

W' mass1.84 TeV , 8 TeV [ATLAS-CONF-2013-050]-1=14.3 fbL

W' mass430 GeV , 7 TeV [1209.6593]-1=4.7 fbL

W' mass2.55 TeV , 7 TeV [1209.4446]-1=4.7 fbL

Z' mass1.8 TeV , 8 TeV [ATLAS-CONF-2013-052]-1=14.3 fbL

Z' mass1.4 TeV , 7 TeV [1210.6604]-1=4.7 fbL

Z' mass2.86 TeV , 8 TeV [ATLAS-CONF-2013-017]-1=20 fbL

(C=1)Λ3.3 TeV , 8 TeV [ATLAS-CONF-2013-051]-1=14.3 fbL

(constructive int.)Λ13.9 TeV , 7 TeV [1211.1150]-1=5.0 fbL

Λ7.6 TeV , 7 TeV [1210.1718]-1=4.8 fbL

=6)δ (DM4.11 TeV , 7 TeV [1210.1718]-1=4.7 fbL

=6)δ (DM1.5 TeV , 7 TeV [1204.4646]-1=1.0 fbL

=6)δ (DM1.25 TeV , 7 TeV [1111.0080]-1=1.3 fbL

massKK

g2.07 TeV , 7 TeV [1305.2756]-1=4.7 fbL

= 1.0)PlM/kGraviton mass (850 GeV , 8 TeV [ATLAS-CONF-2012-150]-1=7.2 fbL

= 0.1)PlM/kGraviton mass (1.23 TeV , 7 TeV [1208.2880]-1=4.7 fbL

= 0.1)PlM/kGraviton mass (2.47 TeV , 8 TeV [ATLAS-CONF-2013-017]-1=20 fbL

-1 ~ RKKM4.71 TeV , 7 TeV [1209.2535]-1=5.0 fbL

-1Compact. scale R1.40 TeV , 7 TeV [1209.0753]-1=4.8 fbL

=3, NLO)δ (HLZ SM4.18 TeV , 7 TeV [1211.1150]-1=4.7 fbL

=2)δ (DM1.93 TeV , 7 TeV [1209.4625]-1=4.6 fbL

=2)δ (DM4.37 TeV , 7 TeV [1210.4491]-1=4.7 fbL

Only a selection of the available mass limits on new states or phenomena shown*

-1 = ( 1 - 20) fbLdt∫ = 7, 8 TeVs

ATLASPreliminary

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

Situation will (hopefully) change at 13-14 TeV. If not, then we haveto look in small deviations wrt SM: “precision physics”.

1 / 33

Page 4: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Status after LHC “run I”I Scalar at 125 GeV found, study of properties begun

SMσ/σBest fit 0 0.5 1 1.5 2 2.5

0.28± = 0.92 µ ZZ→H

0.20± = 0.68 µ WW→H

0.27± = 0.77 µ γγ →H

0.41± = 1.10 µ ττ →H

0.62± = 1.15 µ bb→H

0.14± = 0.80 µ Combined

-1 19.6 fb≤ = 8 TeV, L s -1 5.1 fb≤ = 7 TeV, L s

CMS Preliminary = 0.65

SMp

= 125.7 GeVH m

parameter value0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

BSMBR

γκ

τκ

= 0.78 SM

p

= 0.88 SM

p

68% CL95% CL

-1 19.6 fb≤ = 8 TeV, L s -1 5.1 fb≤ = 7 TeV, L s

CMS Preliminary

1 ]≤ Vκ[

68% CL95% CL

I In general no smoking-gun signal of new-physics

Model e, µ, τ, γ Jets EmissT

∫L dt[fb−1] Mass limit Reference

Inclu

siv

eS

ea

rch

es

3rd

ge

n.

gm

ed

.3rd

ge

n.

sq

ua

rks

dir

ect

pro

du

ctio

nE

Wd

ire

ct

Lo

ng

-liv

ed

pa

rtic

les

RP

VO

the

r

MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q)=m(g ) ATLAS-CONF-2013-0471.7 TeVq, g

MSUGRA/CMSSM 1 e,µ 3-6 jets Yes 20.3 any m(q) ATLAS-CONF-2013-0621.2 TeVg

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q) 1308.18411.1 TeVg

qq, q→qχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-047740 GeVq

g g , g→qqχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-0471.3 TeVg

g g , g→qqχ±1→qqW ±χ01 1 e,µ 3-6 jets Yes 20.3 m(χ

01)<200 GeV, m(χ

±)=0.5(m(χ

01 )+m(g )) ATLAS-CONF-2013-0621.18 TeVg

g g , g→qq(ℓℓ/ℓν/νν)χ01 2 e,µ 0-3 jets - 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-0891.12 TeVg

GMSB (ℓ NLSP) 2 e,µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg

GMSB (ℓ NLSP) 1-2 τ 0-2 jets Yes 20.7 tanβ >18 ATLAS-CONF-2013-0261.4 TeVg

GGM (bino NLSP) 2 γ - Yes 4.8 m(χ01)>50 GeV 1209.07531.07 TeVg

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ01)>50 GeV ATLAS-CONF-2012-144619 GeVg

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ01)>220 GeV 1211.1167900 GeVg

GGM (higgsino NLSP) 2 e, µ (Z ) 0-3 jets Yes 5.8 m(H)>200 GeV ATLAS-CONF-2012-152690 GeVg

Gravitino LSP 0 mono-jet Yes 10.5 m(g )>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g→bbχ01 0 3 b Yes 20.1 m(χ

01)<600 GeV ATLAS-CONF-2013-0611.2 TeVg

g→tt χ01 0 7-10 jets Yes 20.3 m(χ

01) <350 GeV 1308.18411.1 TeVg

g→tt χ01 0-1 e,µ 3 b Yes 20.1 m(χ

01)<400 GeV ATLAS-CONF-2013-0611.34 TeVg

g→bt χ+1 0-1 e,µ 3 b Yes 20.1 m(χ

01)<300 GeV ATLAS-CONF-2013-0611.3 TeVg

b1b1, b1→bχ01 0 2 b Yes 20.1 m(χ

01)<90 GeV 1308.2631100-620 GeVb1

b1b1, b1→tχ±1 2 e,µ (SS) 0-3 b Yes 20.7 m(χ

±1 )=2 m(χ

01) ATLAS-CONF-2013-007275-430 GeVb1

t1 t1(light), t1→bχ±1 1-2 e,µ 1-2 b Yes 4.7 m(χ

01)=55 GeV 1208.4305, 1209.2102110-167 GeVt1

t1 t1(light), t1→Wbχ01 2 e,µ 0-2 jets Yes 20.3 m(χ

01) =m(t1)-m(W )-50 GeV, m(t1)<<m(χ

±1 ) ATLAS-CONF-2013-048130-220 GeVt1

t1 t1(medium), t1→tχ01 2 e,µ 2 jets Yes 20.3 m(χ

01)=0 GeV ATLAS-CONF-2013-065225-525 GeVt1

t1 t1(medium), t1→bχ±1 0 2 b Yes 20.1 m(χ

01)<200 GeV, m(χ

±1 )-m(χ

01 )=5 GeV 1308.2631150-580 GeVt1

t1 t1(heavy), t1→tχ01 1 e,µ 1 b Yes 20.7 m(χ

01)=0 GeV ATLAS-CONF-2013-037200-610 GeVt1

t1 t1(heavy), t1→tχ01 0 2 b Yes 20.5 m(χ

01)=0 GeV ATLAS-CONF-2013-024320-660 GeVt1

t1 t1, t1→cχ01 0 mono-jet/c-tag Yes 20.3 m(t1)-m(χ

01)<85 GeV ATLAS-CONF-2013-06890-200 GeVt1

t1 t1(natural GMSB) 2 e, µ (Z ) 1 b Yes 20.7 m(χ01)>150 GeV ATLAS-CONF-2013-025500 GeVt1

t2 t2, t2→t1 + Z 3 e, µ (Z ) 1 b Yes 20.7 m(t1)=m(χ01)+180 GeV ATLAS-CONF-2013-025271-520 GeVt2

ℓL,RℓL,R, ℓ→ℓχ01 2 e,µ 0 Yes 20.3 m(χ01)=0 GeV ATLAS-CONF-2013-04985-315 GeVℓ

χ+1 χ−1 , χ

+1→ℓν(ℓν) 2 e,µ 0 Yes 20.3 m(χ

01)=0 GeV, m(ℓ, ν)=0.5(m(χ

±1 )+m(χ

01 )) ATLAS-CONF-2013-049125-450 GeVχ±

1

χ+1 χ−1 , χ

+1→τν(τν) 2 τ - Yes 20.7 m(χ

01)=0 GeV, m(τ, ν)=0.5(m(χ

±1 )+m(χ

01)) ATLAS-CONF-2013-028180-330 GeVχ±

1

χ±1 χ02→ℓLνℓLℓ(νν), ℓνℓLℓ(νν) 3 e,µ 0 Yes 20.7 m(χ

±1 )=m(χ

02), m(χ

01)=0, m(ℓ, ν)=0.5(m(χ

±1 )+m(χ

01 )) ATLAS-CONF-2013-035600 GeVχ±

1 , χ02

χ±1 χ02→W χ

01Z χ

01 3 e,µ 0 Yes 20.7 m(χ

±1 )=m(χ

02 ), m(χ

01)=0, sleptons decoupled ATLAS-CONF-2013-035315 GeVχ±

1 , χ02

χ±1 χ02→W χ

01h χ

01 1 e,µ 2 b Yes 20.3 m(χ

±1 )=m(χ

02 ), m(χ

01)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ±

1 , χ02

Direct χ+1 χ−1 prod., long-lived χ

±1 Disapp. trk 1 jet Yes 20.3 m(χ

±1 )-m(χ

01 )=160 MeV, τ(χ

±1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ±

1

Stable, stopped g R-hadron 0 1-5 jets Yes 22.9 m(χ01)=100 GeV, 10 µs<τ(g)<1000 s ATLAS-CONF-2013-057832 GeVg

GMSB, stable τ, χ01→τ(e, µ)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ0

1

GMSB, χ01→γG , long-lived χ

01 2 γ - Yes 4.7 0.4<τ(χ

01)<2 ns 1304.6310230 GeVχ0

1

qq, χ01→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ

01)=108 GeV ATLAS-CONF-2013-0921.0 TeVq

LFV pp→ντ + X , ντ→e + µ 2 e,µ - - 4.6 λ′311=0.10, λ132=0.05 1212.12721.61 TeVντLFV pp→ντ + X , ντ→e(µ) + τ 1 e,µ + τ - - 4.6 λ′311=0.10, λ1(2)33=0.05 1212.12721.1 TeVντ

Bilinear RPV CMSSM 1 e,µ 7 jets Yes 4.7 m(q)=m(g ), cτLSP<1 mm ATLAS-CONF-2012-1401.2 TeVq, g

χ+1 χ−1 , χ

+1→W χ

01, χ

01→ee νµ, eµνe 4 e,µ - Yes 20.7 m(χ

01)>300 GeV, λ121>0 ATLAS-CONF-2013-036760 GeVχ±

1

χ+1 χ−1 , χ

+1→W χ

01, χ

01→ττνe , eτντ 3 e,µ + τ - Yes 20.7 m(χ

01)>80 GeV, λ133>0 ATLAS-CONF-2013-036350 GeVχ±

1

g→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg

g→t1t, t1→bs 2 e,µ (SS) 0-3 b Yes 20.7 ATLAS-CONF-2013-007880 GeVg

Scalar gluon pair, sgluon→qq 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt 2 e,µ (SS) 1 b Yes 14.3 ATLAS-CONF-2013-051800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale

Mass scale [TeV]10−1 1√s = 7 TeV

full data

√s = 8 TeV

partial data

√s = 8 TeV

full data

ATLAS SUSY Searches* - 95% CL Lower LimitsStatus: SUSY 2013

ATLAS Preliminary∫L dt = (4.6 - 22.9) fb−1

√s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Mass scale [TeV]

-110 1 10 210

Oth

erE

xcit.

ferm

.N

ew

quar

ksLQ

V'

CI

Ext

ra d

imen

sion

s

Magnetic monopoles (DY prod.) : highly ionizing tracksMulti-charged particles (DY prod.) : highly ionizing tracks

jjmColor octet scalar : dijet resonance, ll

m), µµll)=1) : SS ee (→L

±± (DY prod., BR(HL±±H

Zlm (type III seesaw) : Z-l resonance, ±Heavy lepton NMajor. neutr. (LRSM, no mixing) : 2-lep + jets

WZmll), νTechni-hadrons (LSTC) : WZ resonance (l

µµee/mTechni-hadrons (LSTC) : dilepton, γl

m resonance, γExcited leptons : l-WtmExcited b quark : W-t resonance,

jjmExcited quarks : dijet resonance, jetγ

m-jet resonance, γExcited quarks : qνlmVector-like quark : CC,

Ht+X→Vector-like quark : TT,missT

E SS dilepton + jets + →4th generation : b'b' WbWb→ generation : t't'th4

jjντjj, ττ=1) : kin. vars. in βScalar LQ pair (jjνµjj, µµ=1) : kin. vars. in βScalar LQ pair (jjν=1) : kin. vars. in eejj, eβScalar LQ pair (tb

m tb, LRSM) : → (RW'tqm=1) :

R tq, g→W' (

µT,e/mW' (SSM) : ttm l+jets, → tZ' (leptophobic topcolor) : t

ττmZ' (SSM) : µµee/mZ' (SSM) :

,missTEuutt CI : SS dilepton + jets + ll

m, µµqqll CI : ee & )

jjm(χqqqq contact interaction :

)jjm(χ

Quantum black hole : dijet, FT

pΣ=3) : leptons + jets, DM /THMADD BH (ch. part.N=3) : SS dimuon, DM /THMADD BH (

ttm l+jets, → t (BR=0.925) : tt t→

KKRS g

lljjmBulk RS : ZZ resonance, νlν,lTmRS1 : WW resonance, llmRS1 : dilepton, llm ED : dilepton, 2/Z1S

,missTEUED : diphoton + / llγγmLarge ED (ADD) : diphoton & dilepton,

,missTELarge ED (ADD) : monophoton + ,missTELarge ED (ADD) : monojet +

mass862 GeV , 7 TeV [1207.6411]-1=2.0 fbL

mass (|q| = 4e)490 GeV , 7 TeV [1301.5272]-1=4.4 fbL

Scalar resonance mass1.86 TeV , 7 TeV [1210.1718]-1=4.8 fbL

)µµ mass (limit at 398 GeV for L±±H409 GeV , 7 TeV [1210.5070]-1=4.7 fbL

| = 0)τ| = 0.063, |Vµ| = 0.055, |Ve

mass (|V±N245 GeV , 8 TeV [ATLAS-CONF-2013-019]-1=5.8 fbL

) = 2 TeV)R

(WmN mass (1.5 TeV , 7 TeV [1203.5420]-1=2.1 fbL

))T

ρ(m) = 1.1 T

(am, Wm) + Tπ(m) = T

ρ(m mass (T

ρ920 GeV , 8 TeV [ATLAS-CONF-2013-015]-1=13.0 fbL

)W

) = MTπ(m) - Tω/T

ρ(m mass (Tω/T

ρ850 GeV , 7 TeV [1209.2535]-1=5.0 fbL

= m(l*))Λl* mass (2.2 TeV , 8 TeV [ATLAS-CONF-2012-146]-1=13.0 fbL

b* mass (left-handed coupling)870 GeV , 7 TeV [1301.1583]-1=4.7 fbL

q* mass3.84 TeV , 8 TeV [ATLAS-CONF-2012-148]-1=13.0 fbL

q* mass2.46 TeV , 7 TeV [1112.3580]-1=2.1 fbL

)Q/mν = qQκVLQ mass (charge -1/3, coupling 1.12 TeV , 7 TeV [ATLAS-CONF-2012-137]-1=4.6 fbL

T mass (isospin doublet)790 GeV , 8 TeV [ATLAS-CONF-2013-018]-1=14.3 fbL

b' mass720 GeV , 8 TeV [ATLAS-CONF-2013-051]-1=14.3 fbL

t' mass656 GeV , 7 TeV [1210.5468]-1=4.7 fbL

gen. LQ massrd3534 GeV , 7 TeV [1303.0526]-1=4.7 fbL

gen. LQ massnd2685 GeV , 7 TeV [1203.3172]-1=1.0 fbL

gen. LQ massst1660 GeV , 7 TeV [1112.4828]-1=1.0 fbL

W' mass1.84 TeV , 8 TeV [ATLAS-CONF-2013-050]-1=14.3 fbL

W' mass430 GeV , 7 TeV [1209.6593]-1=4.7 fbL

W' mass2.55 TeV , 7 TeV [1209.4446]-1=4.7 fbL

Z' mass1.8 TeV , 8 TeV [ATLAS-CONF-2013-052]-1=14.3 fbL

Z' mass1.4 TeV , 7 TeV [1210.6604]-1=4.7 fbL

Z' mass2.86 TeV , 8 TeV [ATLAS-CONF-2013-017]-1=20 fbL

(C=1)Λ3.3 TeV , 8 TeV [ATLAS-CONF-2013-051]-1=14.3 fbL

(constructive int.)Λ13.9 TeV , 7 TeV [1211.1150]-1=5.0 fbL

Λ7.6 TeV , 7 TeV [1210.1718]-1=4.8 fbL

=6)δ (DM4.11 TeV , 7 TeV [1210.1718]-1=4.7 fbL

=6)δ (DM1.5 TeV , 7 TeV [1204.4646]-1=1.0 fbL

=6)δ (DM1.25 TeV , 7 TeV [1111.0080]-1=1.3 fbL

massKK

g2.07 TeV , 7 TeV [1305.2756]-1=4.7 fbL

= 1.0)PlM/kGraviton mass (850 GeV , 8 TeV [ATLAS-CONF-2012-150]-1=7.2 fbL

= 0.1)PlM/kGraviton mass (1.23 TeV , 7 TeV [1208.2880]-1=4.7 fbL

= 0.1)PlM/kGraviton mass (2.47 TeV , 8 TeV [ATLAS-CONF-2013-017]-1=20 fbL

-1 ~ RKKM4.71 TeV , 7 TeV [1209.2535]-1=5.0 fbL

-1Compact. scale R1.40 TeV , 7 TeV [1209.0753]-1=4.8 fbL

=3, NLO)δ (HLZ SM4.18 TeV , 7 TeV [1211.1150]-1=4.7 fbL

=2)δ (DM1.93 TeV , 7 TeV [1209.4625]-1=4.6 fbL

=2)δ (DM4.37 TeV , 7 TeV [1210.4491]-1=4.7 fbL

Only a selection of the available mass limits on new states or phenomena shown*

-1 = ( 1 - 20) fbLdt∫ = 7, 8 TeVs

ATLASPreliminary

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

Situation will (hopefully) change at 13-14 TeV. If not, then we haveto look in small deviations wrt SM: “precision physics”.

1 / 33

Page 5: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Search strategies and theory inputs

I examples of strategies to find new-physics / isolate SM processes:

1 : s-channel resonance

(GeV)TM500 1000 1500 2000 2500

Events

/20

GeV

-310

-210

-110

1

10

210

310

410

510

610

710

810

910

1010

Diboson

νµ→W

µµ→DY

Multijet

+single toptt

ντ→W

Data

νµ→W'

νµ→W' o

ve

rflo

w b

in

M = 1.3 TeV

M = 2.3 TeV

CMS, 3.7 fb-1, 2012, s = 8 TeV

+ ETmiss

µ

2 : jet-binned x-section

0 1 2 3 4 5 6 70

10

20

30

310×

stat±Obs syst±Exp

DYTopWWMisidVVHiggs

jn

Eve

nts

/ bin

jn

Eve

nts

/ bin ATLAS

-1fb 20.3 TeV, =8 s

3 : BDT output

BDT output -1 -0.5 0 0.5 1

210

310

410

510

610

datasignal (t-channel)s-channeltWttDYWdibosonQCDstat. + syst.

-1 = 8 TeV, L = 20 fbsCMS preliminary

Muon channel, 2J1T

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(exp

.-m

eas.

)/m

eas.

-1

-0.5

0

0.5

1

- Higgs discovery belongs to 1 , but Higgs characterization, like 2 , requires theory inputs(rates,shapes,binned x-sections,...)

- For 2 and 3 , we need to control as much as possible QCD effects (i.e. rates andshapes, and also uncertainties!)

- Some analysis techniques (e.g. 3 ) heavily relies on using MC event generators toseparate signal and backgrounds

- at some level, MC event generators enter in almost all experimental analyses

precise tools⇒ smaller uncertainties on measured quantities⇓

“small” deviations from SM accessible

2 / 33

Page 6: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Search strategies and theory inputs

I examples of strategies to find new-physics / isolate SM processes:

1 : s-channel resonance

(GeV)TM500 1000 1500 2000 2500

Events

/20

GeV

-310

-210

-110

1

10

210

310

410

510

610

710

810

910

1010

Diboson

νµ→W

µµ→DY

Multijet

+single toptt

ντ→W

Data

νµ→W'

νµ→W' o

ve

rflo

w b

in

M = 1.3 TeV

M = 2.3 TeV

CMS, 3.7 fb-1, 2012, s = 8 TeV

+ ETmiss

µ

2 : jet-binned x-section

0 1 2 3 4 5 6 70

10

20

30

310×

stat±Obs syst±Exp

DYTopWWMisidVVHiggs

jn

Eve

nts

/ bin

jn

Eve

nts

/ bin ATLAS

-1fb 20.3 TeV, =8 s

3 : BDT output

BDT output -1 -0.5 0 0.5 1

210

310

410

510

610

datasignal (t-channel)s-channeltWttDYWdibosonQCDstat. + syst.

-1 = 8 TeV, L = 20 fbsCMS preliminary

Muon channel, 2J1T

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(exp

.-m

eas.

)/m

eas.

-1

-0.5

0

0.5

1

- Higgs discovery belongs to 1 , but Higgs characterization, like 2 , requires theory inputs(rates,shapes,binned x-sections,...)

- For 2 and 3 , we need to control as much as possible QCD effects (i.e. rates andshapes, and also uncertainties!)

- Some analysis techniques (e.g. 3 ) heavily relies on using MC event generators toseparate signal and backgrounds

- at some level, MC event generators enter in almost all experimental analyses

precise tools⇒ smaller uncertainties on measured quantities⇓

“small” deviations from SM accessible

2 / 33

Page 7: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Event generators: what they are?ideal world: high-energy collision and detection of elementary particles

real world:

I collide non-elementary particlesI we detect e, µ, γ,hadrons, “missing energy”

I we want to predict final state- realistically- precisely- from first principles

⇒ full event simulation needed to:- compare theory and data- estimate how backgrounds affect signal region- test analysis strategies

g

g

t

t

tH

[sherpa’s artistic view]

I hard scattering: QCD, EW, BSM (fixed order) µ ≈ Q� ΛQCD

I multiple soft and collinear emissions ΛQCD < µ < Q

↪→ pQCD (parton shower approximation)I large distance: hadronisation µ ≈ ΛQCD

↪→ non-perturbative QCD→ phenomenological models, tuned on data.

3 / 33

Page 8: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Event generators: what they are?ideal world: high-energy collision and detection of elementary particlesreal world:

I collide non-elementary particlesI we detect e, µ, γ,hadrons, “missing energy”

I we want to predict final state- realistically- precisely- from first principles

⇒ full event simulation needed to:- compare theory and data- estimate how backgrounds affect signal region- test analysis strategies

�������������������������

�������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������������������������

���������������������������������������������������������

���������������������������������������������������������

������������

������������

������������������

������������������

��������������������

��������������������

������������������

������������������

��������������������

��������������������

������������������

������������������

��������������������

��������������������

��������������������

��������������������

������������������������

������������������������

������������������������

������������������������

��������������������

��������������������

������������������

������������������������

������������

������������������

���������������

���������������

������������������

������������������

�������������������������

�������������������������

���������������

���������������

������������������

������������������

������������������������

������������������

������������������

������������

������������

������������������

������������������

����������

����������

����������

����������

������������������

������������������ ���

������������

���������������

������������������

������������������

���������������

���������������

����������

����������

������������������

������������������

������������

������������

���������������

���������������

��������������������

��������������������

������������

������������

������������������

������������������

������������������������������������

��������������������������������������

����������

������������

���������������

���������������

���������������

���������������

[sherpa’s artistic view]

I hard scattering: QCD, EW, BSM (fixed order) µ ≈ Q� ΛQCD

I multiple soft and collinear emissions ΛQCD < µ < Q

↪→ pQCD (parton shower approximation)I large distance: hadronisation µ ≈ ΛQCD

↪→ non-perturbative QCD→ phenomenological models, tuned on data.

3 / 33

Page 9: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Event generators: what they are?ideal world: high-energy collision and detection of elementary particlesreal world:

I collide non-elementary particlesI we detect e, µ, γ,hadrons, “missing energy”

I we want to predict final state- realistically- precisely- from first principles

⇒ full event simulation needed to:- compare theory and data- estimate how backgrounds affect signal region- test analysis strategies

�������������������������

�������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������������������������

���������������������������������������������������������

���������������������������������������������������������

������������

������������

������������������

������������������

��������������������

��������������������

������������������

������������������

��������������������

��������������������

������������������

������������������

��������������������

��������������������

��������������������

��������������������

������������������������

������������������������

������������������������

������������������������

��������������������

��������������������

������������������

������������������������

������������

������������������

���������������

���������������

������������������

������������������

�������������������������

�������������������������

���������������

���������������

������������������

������������������

������������������������

������������������

������������������

������������

������������

������������������

������������������

����������

����������

����������

����������

������������������

������������������ ���

������������

���������������

������������������

������������������

���������������

���������������

����������

����������

������������������

������������������

������������

������������

���������������

���������������

��������������������

��������������������

������������

������������

������������������

������������������

������������������������������������

��������������������������������������

����������

������������

���������������

���������������

���������������

���������������

[sherpa’s artistic view]

I hard scattering: QCD, EW, BSM (fixed order) µ ≈ Q� ΛQCD

I multiple soft and collinear emissions ΛQCD < µ < Q

↪→ pQCD (parton shower approximation)I large distance: hadronisation µ ≈ ΛQCD

↪→ non-perturbative QCD→ phenomenological models, tuned on data.

3 / 33

Page 10: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Event generators: what they are?ideal world: high-energy collision and detection of elementary particlesreal world:

I collide non-elementary particlesI we detect e, µ, γ,hadrons, “missing energy”

I we want to predict final state- realistically- precisely- from first principles

⇒ full event simulation needed to:- compare theory and data- estimate how backgrounds affect signal region- test analysis strategies

�������������������������

�������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������������������������

���������������������������������������������������������

���������������������������������������������������������

������������

������������

������������������

������������������

��������������������

��������������������

������������������

������������������

��������������������

��������������������

������������������

������������������

��������������������

��������������������

��������������������

��������������������

������������������������

������������������������

������������������������

������������������������

��������������������

��������������������

������������������

������������������������

������������

������������������

���������������

���������������

������������������

������������������

�������������������������

�������������������������

���������������

���������������

������������������

������������������

������������������������

������������������

������������������

������������

������������

������������������

������������������

����������

����������

����������

����������

������������������

������������������ ���

������������

���������������

������������������

������������������

���������������

���������������

����������

����������

������������������

������������������

������������

������������

���������������

���������������

��������������������

��������������������

������������

������������

������������������

������������������

������������������������������������

��������������������������������������

����������

������������

���������������

���������������

���������������

���������������

[sherpa’s artistic view]

I hard scattering: QCD, EW, BSM (fixed order) µ ≈ Q� ΛQCD

I multiple soft and collinear emissions ΛQCD < µ < Q

↪→ pQCD (parton shower approximation)I large distance: hadronisation µ ≈ ΛQCD

↪→ non-perturbative QCD→ phenomenological models, tuned on data.

3 / 33

Page 11: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Plan of the talk

1. review how these tools work

- parton showers (LOPS)- fixed-order (NLO)

2. discuss how their accuracy can be improved

- matching NLO and PS (NLOPS): POWHEG- NLOPS merging & MiNLO

3. explain how to build an event generator that isNNLO accurate (NNLOPS)

- Higgs and Drell-Yan production at NNLOPS

4 / 33

Page 12: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

parton showers and fixed order

5 / 33

Page 13: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers I- connect the hard scattering (µ ≈ Q) with the final state hadrons (µ ≈ ΛQCD)- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q2

2. quarks and gluons are color-charged⇒ they radiate (like photons off electrons)

3. soft-collinear emissions are ennhanced:1

(p1 + p2)2=

1

2E1E2(1− cos θ)

4. in soft-collinear limit, factorization properties of QCDamplitudes

|Mn+1|2dΦn+1 → |Mn|2dΦnαS

dt

tPq,qg(z)dz

z = k0/(k

0+ l

0) quark energy fraction

t ={

(k + l)2, l

2T , E

2θ2}

splitting hardness

Pq,qg(z) = CF1 + z2

1− zAP splitting function

probabilistic interpretation!

6 / 33

Page 14: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers I- connect the hard scattering (µ ≈ Q) with the final state hadrons (µ ≈ ΛQCD)- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q2

2. quarks and gluons are color-charged⇒ they radiate (like photons off electrons)

3. soft-collinear emissions are ennhanced:1

(p1 + p2)2=

1

2E1E2(1− cos θ)

4. in soft-collinear limit, factorization properties of QCDamplitudes

|Mn+1|2dΦn+1 → |Mn|2dΦnαS

dt

tPq,qg(z)dz

z = k0/(k

0+ l

0) quark energy fraction

t ={

(k + l)2, l

2T , E

2θ2}

splitting hardness

Pq,qg(z) = CF1 + z2

1− zAP splitting function

probabilistic interpretation!

6 / 33

Page 15: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers I- connect the hard scattering (µ ≈ Q) with the final state hadrons (µ ≈ ΛQCD)- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q2

2. quarks and gluons are color-charged⇒ they radiate (like photons off electrons)

3. soft-collinear emissions are ennhanced:1

(p1 + p2)2=

1

2E1E2(1− cos θ)

4. in soft-collinear limit, factorization properties of QCDamplitudes

|Mn+1|2dΦn+1 → |Mn|2dΦnαS

dt

tPq,qg(z)dz

z = k0/(k

0+ l

0) quark energy fraction

t ={

(k + l)2, l

2T , E

2θ2}

splitting hardness

Pq,qg(z) = CF1 + z2

1− zAP splitting function

probabilistic interpretation!

6 / 33

Page 16: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers I- connect the hard scattering (µ ≈ Q) with the final state hadrons (µ ≈ ΛQCD)- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q2

2. quarks and gluons are color-charged⇒ they radiate (like photons off electrons)

3. soft-collinear emissions are ennhanced:1

(p1 + p2)2=

1

2E1E2(1− cos θ)

4. in soft-collinear limit, factorization properties of QCDamplitudes

|Mn+1|2dΦn+1 → |Mn|2dΦnαS

dt

tPq,qg(z)dz

z = k0/(k

0+ l

0) quark energy fraction

t ={

(k + l)2, l

2T , E

2θ2}

splitting hardness

Pq,qg(z) = CF1 + z2

1− zAP splitting function

probabilistic interpretation!

6 / 33

Page 17: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers I- connect the hard scattering (µ ≈ Q) with the final state hadrons (µ ≈ ΛQCD)- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q2

2. quarks and gluons are color-charged⇒ they radiate (like photons off electrons)

3. soft-collinear emissions are ennhanced:1

(p1 + p2)2=

1

2E1E2(1− cos θ)

4. in soft-collinear limit, factorization properties of QCDamplitudes

|Mn+1|2dΦn+1 → |Mn|2dΦnαS

dt

tPq,qg(z)dz

z = k0/(k

0+ l

0) quark energy fraction

t ={

(k + l)2, l

2T , E

2θ2}

splitting hardness

Pq,qg(z) = CF1 + z2

1− zAP splitting function

probabilistic interpretation!

6 / 33

Page 18: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers I- connect the hard scattering (µ ≈ Q) with the final state hadrons (µ ≈ ΛQCD)- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q2

2. quarks and gluons are color-charged⇒ they radiate (like photons off electrons)

3. soft-collinear emissions are ennhanced:1

(p1 + p2)2=

1

2E1E2(1− cos θ)

4. in soft-collinear limit, factorization properties of QCDamplitudes

|Mn+1|2dΦn+1 → |Mn|2dΦnαS

dt

tPq,qg(z)dz

z = k0/(k

0+ l

0) quark energy fraction

t ={

(k + l)2, l

2T , E

2θ2}

splitting hardness

Pq,qg(z) = CF1 + z2

1− zAP splitting function

probabilistic interpretation!

6 / 33

Page 19: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers I- connect the hard scattering (µ ≈ Q) with the final state hadrons (µ ≈ ΛQCD)- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q2

2. quarks and gluons are color-charged⇒ they radiate (like photons off electrons)

3. soft-collinear emissions are ennhanced:1

(p1 + p2)2=

1

2E1E2(1− cos θ)

4. in soft-collinear limit, factorization properties of QCDamplitudes

|Mn+1|2dΦn+1 → |Mn|2dΦnαS

dt

tPq,qg(z)dz

z = k0/(k

0+ l

0) quark energy fraction

t ={

(k + l)2, l

2T , E

2θ2}

splitting hardness

Pq,qg(z) = CF1 + z2

1− zAP splitting function

probabilistic interpretation!

6 / 33

Page 20: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers I- connect the hard scattering (µ ≈ Q) with the final state hadrons (µ ≈ ΛQCD)- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q2

2. quarks and gluons are color-charged⇒ they radiate (like photons off electrons)

3. soft-collinear emissions are ennhanced:1

(p1 + p2)2=

1

2E1E2(1− cos θ)

4. in soft-collinear limit, factorization properties of QCDamplitudes

|Mn+1|2dΦn+1 → |Mn|2dΦnαS

dt

tPq,qg(z)dz

z = k0/(k

0+ l

0) quark energy fraction

t ={

(k + l)2, l

2T , E

2θ2}

splitting hardness

Pq,qg(z) = CF1 + z2

1− zAP splitting function

probabilistic interpretation!

6 / 33

Page 21: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers II

5. dominant contributions for multiparticle productiondue to strongly ordered emissions

t1 > t2 > t3...

6. at any given order, we also have virtual corrections:for consistency we should include them with thesame approximation

I LL virtual contributions included by assigning to each internal line a Sudakov form factor:

∆a(ti, ti+1) = exp

−∑(bc)

∫ ti

ti+1

dt′

t′

∫αs(t′)

2πPa,bc(z) dz

I ∆a corresponds to the probability of having no resolved emission between ti and ti+1 off

a line of flavour a� resummation of collinear logarithms

7. At scales µ ≈ ΛQCD, hadrons form: non-perturbative effect, simulated with models fitted todata

7 / 33

Page 22: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers: summary

dσSMC = |MB |2dΦB︸ ︷︷ ︸dσB

{

∆(tmax, t0)+∆(tmax, t) dPemis(t)︸ ︷︷ ︸αs2π

1tP (z) dΦr

{∆(t, t0) + ∆(t, t′)dPemis(t′)︸ ︷︷ ︸

t′<t

}

}

∆(tmax, t) = exp

{−∫ tmax

tdΦ′r

αs

1

t′P (z′)

}

This is “LOPS”

- A parton shower changes shapes, not the overall normalization, which stays LO (unitarity)

8 / 33

Page 23: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers: summary

dσSMC = |MB |2dΦB︸ ︷︷ ︸dσB

{∆(tmax, t0)

+∆(tmax, t) dPemis(t)︸ ︷︷ ︸αs2π

1tP (z) dΦr

{∆(t, t0) + ∆(t, t′)dPemis(t′)︸ ︷︷ ︸

t′<t

}

}

∆(tmax, t) = exp

{−∫ tmax

tdΦ′r

αs

1

t′P (z′)

}

This is “LOPS”

- A parton shower changes shapes, not the overall normalization, which stays LO (unitarity)

8 / 33

Page 24: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers: summary

dσSMC = |MB |2dΦB︸ ︷︷ ︸dσB

{∆(tmax, t0)+∆(tmax, t) dPemis(t)︸ ︷︷ ︸

αs2π

1tP (z) dΦr

{∆(t, t0) + ∆(t, t′)dPemis(t′)︸ ︷︷ ︸

t′<t

}

}

∆(tmax, t) = exp

{−∫ tmax

tdΦ′r

αs

1

t′P (z′)

}

This is “LOPS”

- A parton shower changes shapes, not the overall normalization, which stays LO (unitarity)

8 / 33

Page 25: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers: summary

dσSMC = |MB |2dΦB︸ ︷︷ ︸dσB

{∆(tmax, t0)+∆(tmax, t) dPemis(t)︸ ︷︷ ︸

αs2π

1tP (z) dΦr

{∆(t, t0) + ∆(t, t′)dPemis(t′)︸ ︷︷ ︸

t′<t

}}

∆(tmax, t) = exp

{−∫ tmax

tdΦ′r

αs

1

t′P (z′)

}

This is “LOPS”

- A parton shower changes shapes, not the overall normalization, which stays LO (unitarity)

8 / 33

Page 26: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers: summary

dσSMC = |MB |2dΦB︸ ︷︷ ︸dσB

{∆(tmax, t0)+∆(tmax, t) dPemis(t)︸ ︷︷ ︸

αs2π

1tP (z) dΦr

{∆(t, t0) + ∆(t, t′)dPemis(t′)︸ ︷︷ ︸

t′<t

}}

∆(tmax, t) = exp

{−∫ tmax

tdΦ′r

αs

1

t′P (z′)

}

This is “LOPS”

- A parton shower changes shapes, not the overall normalization, which stays LO (unitarity)

8 / 33

Page 27: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers: summary

dσSMC = |MB |2dΦB︸ ︷︷ ︸dσB

{∆(tmax, t0)+∆(tmax, t) dPemis(t)︸ ︷︷ ︸

αs2π

1tP (z) dΦr

{∆(t, t0) + ∆(t, t′)dPemis(t′)︸ ︷︷ ︸

t′<t

}}

∆(tmax, t) = exp

{−∫ tmax

tdΦ′r

αs

1

t′P (z′)

}

This is “LOPS”

- A parton shower changes shapes, not the overall normalization, which stays LO (unitarity)

8 / 33

Page 28: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Parton showers: summary

dσSMC = |MB |2dΦB︸ ︷︷ ︸dσB

{∆(tmax, t0)+∆(tmax, t) dPemis(t)︸ ︷︷ ︸

αs2π

1tP (z) dΦr

{∆(t, t0) + ∆(t, t′)dPemis(t′)︸ ︷︷ ︸

t′<t

}}

∆(tmax, t) = exp

{−∫ tmax

tdΦ′r

αs

1

t′P (z′)

}

This is “LOPS”

- A parton shower changes shapes, not the overall normalization, which stays LO (unitarity)8 / 33

Page 29: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Do they work?

plot from [Gianotti,Mangano 0504221]

I ok when observables dominated by soft-collinear radiation [!]

I not surprisingly, they fail when looking for hard multijet kinematics [%]I they are only LO+LL accurate (whereas we want (N)NLO QCD corrections + possibly

better log accuracy) [%]

⇒ Not enough if interested in precision (10% or less), or in multijet regions

9 / 33

Page 30: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Next-to-Leading Order IαS ∼ 0.1⇒ to improve the accuracy, use exact perturbative expansion

dσ = dσLO +(αS

)dσNLO +

(αS

)2dσNNLO + ...

LO: Leading OrderNLO: Next-to-Leading Order...

� Why NLO is important?

I first order where rates are reliableI shapes are, in general, better describedI possible to attach sensible theoretical

uncertainties

� When NNLO is needed?

I NLO corrections largeI very high-precision needed

⇒ Drell-Yan, Higgs, tt production

plot from [GoSam collaboration, ’13]plot from [Anastasiou et al., ’03]

10 / 33

Page 31: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Next-to-Leading Order IαS ∼ 0.1⇒ to improve the accuracy, use exact perturbative expansion

dσ = dσLO +(αS

)dσNLO +

(αS

)2dσNNLO + ...

LO: Leading OrderNLO: Next-to-Leading Order...

� Why NLO is important?

I first order where rates are reliableI shapes are, in general, better describedI possible to attach sensible theoretical

uncertainties

� When NNLO is needed?

I NLO corrections largeI very high-precision needed

⇒ Drell-Yan, Higgs, tt production

plot from [GoSam collaboration, ’13]

plot from [Anastasiou et al., ’03]

10 / 33

Page 32: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Next-to-Leading Order IαS ∼ 0.1⇒ to improve the accuracy, use exact perturbative expansion

dσ = dσLO +(αS

)dσNLO +

(αS

)2dσNNLO + ...

LO: Leading OrderNLO: Next-to-Leading Order...

� Why NLO is important?

I first order where rates are reliableI shapes are, in general, better describedI possible to attach sensible theoretical

uncertainties

� When NNLO is needed?

I NLO corrections largeI very high-precision needed

⇒ Drell-Yan, Higgs, tt production

plot from [GoSam collaboration, ’13]

plot from [Anastasiou et al., ’03]

10 / 33

Page 33: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Next-to-Leading Order II

NLO how-to

dσ = dΦn{

B(Φn)︸ ︷︷ ︸LO

+αs

[V (Φn) + R(Φn+1) dΦr︸ ︷︷ ︸

NLO

] }

- Inputs: tree-level n-partons (B), 1-loop n-partons (V ), tree-level n+ 1 partons (R)

- truncated series⇒ result depends on “unphysical” scales(can be used to estimate theoretical uncertainties)

Limitations:I Results are at the parton level only (5− 6 final-state partons is the frontier)

I In regions where collinear emissions are important, they fail (no resummation)

I Choice of scale is an issue when multijets in the final state

0 50 100 150 200 250 300 350 400 450 500

10-3

10-2

10-1

/ d

ET

[

pb

/ G

eV ]

LONLO

0 50 100 150 200 250 300 350 400 450 500

Second Jet ET [ GeV ]

01234567 LO / NLO NLO scale dependence

W- + 3 jets + X

BlackHat+Sherpa

LO scale dependence

ET

jet > 30 GeV, | η

jet | < 3

ET

e > 20 GeV, | η

e | < 2.5

ET

/ > 30 GeV, MT

W > 20 GeV

R = 0.4 [siscone]

√s = 14 TeV

µR = µ

F = E

T

W

0 50 100 150 200 250 300 350 400 450 500

10-3

10-2

10-1

/ d

ET

[

pb

/ G

eV ]

LONLO

0 50 100 150 200 250 300 350 400 450 500

Second Jet ET [ GeV ]

1

1.5 LO / NLO NLO scale dependence

W- + 3 jets + X

BlackHat+Sherpa

LO scale dependence

ET

jet > 30 GeV, | η

jet | < 3

ET

e > 20 GeV, | η

e | < 2.5

ET

/ > 30 GeV, MT

W > 20 GeV

R = 0.4 [siscone]

√s = 14 TeV

µR = µ

F = H

T

^

µ = ET,W µ = HTplot from [Berger et al., ’09]

11 / 33

Page 34: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Next-to-Leading Order II

NLO how-to

dσ = dΦn{

B(Φn)︸ ︷︷ ︸LO

+αs

[V (Φn) + R(Φn+1) dΦr︸ ︷︷ ︸

NLO

] }

- Inputs: tree-level n-partons (B), 1-loop n-partons (V ), tree-level n+ 1 partons (R)

- truncated series⇒ result depends on “unphysical” scales(can be used to estimate theoretical uncertainties)

Limitations:

I Results are at the parton level only (5− 6 final-state partons is the frontier)

I In regions where collinear emissions are important, they fail (no resummation)

I Choice of scale is an issue when multijets in the final state

0 50 100 150 200 250 300 350 400 450 500

10-3

10-2

10-1

/ d

ET [

pb /

GeV

]

LONLO

0 50 100 150 200 250 300 350 400 450 500

Second Jet ET [ GeV ]

01234567 LO / NLO NLO scale dependence

W- + 3 jets + X

BlackHat+Sherpa

LO scale dependence

ET

jet > 30 GeV, | η

jet | < 3

ET

e > 20 GeV, | η

e | < 2.5

ET

/ > 30 GeV, MT

W > 20 GeV

R = 0.4 [siscone]

√s = 14 TeV

µR = µ

F = E

T

W

0 50 100 150 200 250 300 350 400 450 500

10-3

10-2

10-1

/ d

ET [

pb /

GeV

]

LONLO

0 50 100 150 200 250 300 350 400 450 500

Second Jet ET [ GeV ]

1

1.5 LO / NLO NLO scale dependence

W- + 3 jets + X

BlackHat+Sherpa

LO scale dependence

ET

jet > 30 GeV, | η

jet | < 3

ET

e > 20 GeV, | η

e | < 2.5

ET

/ > 30 GeV, MT

W > 20 GeV

R = 0.4 [siscone]

√s = 14 TeV

µR = µ

F = H

T

^

µ = ET,W µ = HTplot from [Berger et al., ’09]

11 / 33

Page 35: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

matching NLO and PS

I POWHEG (POsitive Weight Hardest Emission Generator)

12 / 33

Page 36: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

PS vs. NLO

NLO

! precision

! nowadays this is the standard

% limited multiplicity

% (fail when resummation needed)

parton showers

! realistic + flexible tools

! widely used by experimental coll’s

% limited precision (LO)

% (fail when multiple hard jets)

� can we merge them and build an NLOPS generator?Problem:

overlapping regions!

NLO:

PS:

! many proposals, 2 well-established methods available to solve this problem:MC@NLO and POWHEG [Frixione-Webber ’03, Nason ’04]

13 / 33

Page 37: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

PS vs. NLO

NLO

! precision

! nowadays this is the standard

% limited multiplicity

% (fail when resummation needed)

parton showers

! realistic + flexible tools

! widely used by experimental coll’s

% limited precision (LO)

% (fail when multiple hard jets)

� can we merge them and build an NLOPS generator?Problem: overlapping regions!

NLO:

PS:

! many proposals, 2 well-established methods available to solve this problem:MC@NLO and POWHEG [Frixione-Webber ’03, Nason ’04]

13 / 33

Page 38: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

PS vs. NLO

NLO

! precision

! nowadays this is the standard

% limited multiplicity

% (fail when resummation needed)

parton showers

! realistic + flexible tools

! widely used by experimental coll’s

% limited precision (LO)

% (fail when multiple hard jets)

� can we merge them and build an NLOPS generator?Problem: overlapping regions!

NLO:

PS:

! many proposals, 2 well-established methods available to solve this problem:MC@NLO and POWHEG [Frixione-Webber ’03, Nason ’04]

13 / 33

Page 39: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

PS vs. NLO

NLO

! precision

! nowadays this is the standard

% limited multiplicity

% (fail when resummation needed)

parton showers

! realistic + flexible tools

! widely used by experimental coll’s

% limited precision (LO)

% (fail when multiple hard jets)

� can we merge them and build an NLOPS generator?Problem: overlapping regions!

NLO:

PS:

! many proposals, 2 well-established methods available to solve this problem:MC@NLO and POWHEG [Frixione-Webber ’03, Nason ’04]

13 / 33

Page 40: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NLOPS: POWHEG I

B(Φn)⇒ B(Φn) = B(Φn) +αs2π

[V (Φn) +

∫R(Φn+1) dΦr

]

+

dσPOW = dΦn B(Φn)

{∆(Φn; kmin

T ) + ∆(Φn; kT)αs2π

R(Φn,Φr)

B(Φn)dΦr

}

∆(tm, t)⇒ ∆(Φn; kT) = exp

{−αs

∫R(Φn,Φ

′r)

B(Φn)θ(k′T − kT) dΦ′r

}

14 / 33

Page 41: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NLOPS: POWHEG I

B(Φn)⇒ B(Φn) = B(Φn) +αs2π

[V (Φn) +

∫R(Φn+1) dΦr

]

+

dσPOW = dΦn B(Φn)

{∆(Φn; kmin

T ) + ∆(Φn; kT)αs2π

R(Φn,Φr)

B(Φn)dΦr

}

∆(tm, t)⇒ ∆(Φn; kT) = exp

{−αs

∫R(Φn,Φ

′r)

B(Φn)θ(k′T − kT) dΦ′r

}

14 / 33

Page 42: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NLOPS: POWHEG I

B(Φn)⇒ B(Φn) = B(Φn) +αs2π

[V (Φn) +

∫R(Φn+1) dΦr

]

+

dσPOW = dΦn B(Φn)

{∆(Φn; kmin

T ) + ∆(Φn; kT)αs2π

R(Φn,Φr)

B(Φn)dΦr

}

∆(tm, t)⇒ ∆(Φn; kT) = exp

{−αs

∫R(Φn,Φ

′r)

B(Φn)θ(k′T − kT) dΦ′r

}

14 / 33

Page 43: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NLOPS: POWHEG II

dσPOW = dΦn B(Φn)

{∆(Φn; kmin

T ) + ∆(Φn; kT)αs

R(Φn,Φr)

B(Φn)dΦr

}[+ pT-vetoing subsequent emissions, to avoid double-counting]

- inclusive observables: @NLO

- first hard emission: full tree level ME

- (N)LL resummation of collinear/soft logs

- extra jets in the shower approximation

This is “NLOPS”

POWHEG BOX [Alioli,Nason,Oleari,ER ’10]

I large library of SM processes, (largely) automatedI widely used by LHC collaborations and other theorists (e.g. with GoSam)I not really a closed chapter; some issues are still to be addressed...

15 / 33

Page 44: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NLOPS: POWHEG II

dσPOW = dΦn B(Φn)

{∆(Φn; kmin

T ) + ∆(Φn; kT)αs

R(Φn,Φr)

B(Φn)dΦr

}[+ pT-vetoing subsequent emissions, to avoid double-counting]

- inclusive observables: @NLO

- first hard emission: full tree level ME

- (N)LL resummation of collinear/soft logs

- extra jets in the shower approximation

This is “NLOPS”

POWHEG BOX [Alioli,Nason,Oleari,ER ’10]

I large library of SM processes, (largely) automatedI widely used by LHC collaborations and other theorists (e.g. with GoSam)I not really a closed chapter; some issues are still to be addressed...

15 / 33

Page 45: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NNLO+PS: why and where?NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO “K-factor”[as in Higgs Physics]

2. very high precision needed[e.g. Drell-Yan, top pairs]

I last couple of years:huge progress in NNLO

[Anastasiou et al., ’03]

Q: can we merge NNLO and PS?

� realistic event generation with state-of-the-art perturbative accuracy !� important for precision studies for several processes

I method presented here: based on POWHEG+MiNLO, used so far for- Higgs production [Hamilton,Nason,ER,Zanderighi, 1309.0017]

- neutral & charged Drell-Yan [Karlberg,ER,Zanderighi, 1407.2940]

16 / 33

Page 46: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NNLO+PS: why and where?NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO “K-factor”[as in Higgs Physics]

2. very high precision needed[e.g. Drell-Yan, top pairs]

I last couple of years:huge progress in NNLO

[Anastasiou et al., ’03]

Q: can we merge NNLO and PS?

� realistic event generation with state-of-the-art perturbative accuracy !� important for precision studies for several processes

I method presented here: based on POWHEG+MiNLO, used so far for- Higgs production [Hamilton,Nason,ER,Zanderighi, 1309.0017]

- neutral & charged Drell-Yan [Karlberg,ER,Zanderighi, 1407.2940]

16 / 33

Page 47: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NNLO+PS: why and where?NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO “K-factor”[as in Higgs Physics]

2. very high precision needed[e.g. Drell-Yan, top pairs]

I last couple of years:huge progress in NNLO

[Anastasiou et al., ’03]Q: can we merge NNLO and PS?

� realistic event generation with state-of-the-art perturbative accuracy !� important for precision studies for several processes

I method presented here: based on POWHEG+MiNLO, used so far for- Higgs production [Hamilton,Nason,ER,Zanderighi, 1309.0017]

- neutral & charged Drell-Yan [Karlberg,ER,Zanderighi, 1407.2940]

16 / 33

Page 48: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NNLO+PS: why and where?NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO “K-factor”[as in Higgs Physics]

2. very high precision needed[e.g. Drell-Yan, top pairs]

I last couple of years:huge progress in NNLO

[Anastasiou et al., ’03]Q: can we merge NNLO and PS?

� realistic event generation with state-of-the-art perturbative accuracy !� important for precision studies for several processes

I method presented here: based on POWHEG+MiNLO, used so far for- Higgs production [Hamilton,Nason,ER,Zanderighi, 1309.0017]

- neutral & charged Drell-Yan [Karlberg,ER,Zanderighi, 1407.2940]

16 / 33

Page 49: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

towards NNLO+PS

I what do we need and what do we already have?

H (inclusive) H+j (inclusive) H+2j (inclusive)H @ NLOPS NLO LO showerHJ @ NLOPS / NLO LO

H-HJ @ NLOPS NLO NLO LOH @ NNLOPS NNLO NLO LO

� a merged H-HJ generator is almost OK

I many of the multijet NLO+PS merging approaches work by combining 2 (ormore) NLO+PS generators, introducing a merging scale

I POWHEG + MiNLO: no need of merging scale: it extends the validity of an NLOcomputation with jets in the final state in regions where jets become unresolved

rest of the talk: explain how to do this...

17 / 33

Page 50: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

towards NNLO+PS

I what do we need and what do we already have?

H (inclusive) H+j (inclusive) H+2j (inclusive)H @ NLOPS NLO LO showerHJ @ NLOPS / NLO LO

H-HJ @ NLOPS NLO NLO LOH @ NNLOPS NNLO NLO LO

� a merged H-HJ generator is almost OK

I many of the multijet NLO+PS merging approaches work by combining 2 (ormore) NLO+PS generators, introducing a merging scale

I POWHEG + MiNLO: no need of merging scale: it extends the validity of an NLOcomputation with jets in the final state in regions where jets become unresolved

rest of the talk: explain how to do this...

17 / 33

Page 51: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NLOPS merging

I MiNLO (Multiscale Improved NLO)

18 / 33

Page 52: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

MiNLOMultiscale Improved NLO [Hamilton,Nason,Zanderighi, 1206.3572]

I original goal: method to a-priori choose scales in multijet NLO computationI non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear,

without being resummed)I how: correct weights of different NLO terms with CKKW-inspired approach (without

spoiling formal NLO accuracy)

- for each point sampled, build the “more-likely” shower history that would haveproduced that kinematics (can be done by clustering kinematics with kT -algo, then,by undoing the clustering, build “skeleton”)

- correct original NLO: αS evaluated at nodal scales and Sudakov FFs

- has been used in V/H + up to 2 jets and in V H + up to 1 jet

BNLO = α3S(µR)

[B + α

(NLO)

S V (µR) + α(NLO)

S

∫dΦrR

]BMiNLO = α2

S(mh)αS(qT )∆2g(qT ,mh)

[B(

1− 2∆(1)g (qT ,mh)

)+α

(NLO)

S V (µR)+α(NLO)

S

∫dΦrR

]. µR = (m

2hqT )

1/3

. log ∆f (qT ,mh) = −∫ m2

h

q2T

dq2

q2

αS(q2)

[Af log

m2h

q2+ Bf

]

. ∆(1)f

(qT ,mh) = −α(NLO)S

[ 1

2A1,f log

2 m2h

q2T

+ B1,f logm2h

q2T

]. µF = qT

� Sudakov FF included on H+jBorn kinematics

I MiNLO-improved HJ yields finite results also when 1st jet is unresolved (qT → 0)I BMiNLO ideal to extend validity of HJ-POWHEG [called “HJ-MiNLO” hereafter]

19 / 33

Page 53: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

MiNLOMultiscale Improved NLO [Hamilton,Nason,Zanderighi, 1206.3572]

I original goal: method to a-priori choose scales in multijet NLO computationI non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear,

without being resummed)I how: correct weights of different NLO terms with CKKW-inspired approach (without

spoiling formal NLO accuracy)

- for each point sampled, build the “more-likely” shower history that would haveproduced that kinematics (can be done by clustering kinematics with kT -algo, then,by undoing the clustering, build “skeleton”)

- correct original NLO: αS evaluated at nodal scales and Sudakov FFs

- has been used in V/H + up to 2 jets and in V H + up to 1 jet

BNLO = α3S(µR)

[B + α

(NLO)

S V (µR) + α(NLO)

S

∫dΦrR

]BMiNLO = α2

S(mh)αS(qT )∆2g(qT ,mh)

[B(

1− 2∆(1)g (qT ,mh)

)+α

(NLO)

S V (µR)+α(NLO)

S

∫dΦrR

]. µR = (m

2hqT )

1/3

. log ∆f (qT ,mh) = −∫ m2

h

q2T

dq2

q2

αS(q2)

[Af log

m2h

q2+ Bf

]

. ∆(1)f

(qT ,mh) = −α(NLO)S

[ 1

2A1,f log

2 m2h

q2T

+ B1,f logm2h

q2T

]. µF = qT

� Sudakov FF included on H+jBorn kinematics

I MiNLO-improved HJ yields finite results also when 1st jet is unresolved (qT → 0)I BMiNLO ideal to extend validity of HJ-POWHEG [called “HJ-MiNLO” hereafter]

19 / 33

Page 54: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

MiNLOMultiscale Improved NLO [Hamilton,Nason,Zanderighi, 1206.3572]

I original goal: method to a-priori choose scales in multijet NLO computationI non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear,

without being resummed)I how: correct weights of different NLO terms with CKKW-inspired approach (without

spoiling formal NLO accuracy)

- for each point sampled, build the “more-likely” shower history that would haveproduced that kinematics (can be done by clustering kinematics with kT -algo, then,by undoing the clustering, build “skeleton”)

- correct original NLO: αS evaluated at nodal scales and Sudakov FFs

- has been used in V/H + up to 2 jets and in V H + up to 1 jet

BNLO = α3S(µR)

[B + α

(NLO)

S V (µR) + α(NLO)

S

∫dΦrR

]

BMiNLO = α2S(mh)αS(qT )∆2

g(qT ,mh)[B(

1− 2∆(1)g (qT ,mh)

)+α

(NLO)

S V (µR)+α(NLO)

S

∫dΦrR

]

mh

qT

. µR = (m2hqT )

1/3

. log ∆f (qT ,mh) = −∫ m2

h

q2T

dq2

q2

αS(q2)

[Af log

m2h

q2+ Bf

]

. ∆(1)f

(qT ,mh) = −α(NLO)S

[ 1

2A1,f log

2 m2h

q2T

+ B1,f logm2h

q2T

]. µF = qT

� Sudakov FF included on H+jBorn kinematics

I MiNLO-improved HJ yields finite results also when 1st jet is unresolved (qT → 0)I BMiNLO ideal to extend validity of HJ-POWHEG [called “HJ-MiNLO” hereafter]

19 / 33

Page 55: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

MiNLOMultiscale Improved NLO [Hamilton,Nason,Zanderighi, 1206.3572]

I original goal: method to a-priori choose scales in multijet NLO computationI non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear,

without being resummed)I how: correct weights of different NLO terms with CKKW-inspired approach (without

spoiling formal NLO accuracy)

- for each point sampled, build the “more-likely” shower history that would haveproduced that kinematics (can be done by clustering kinematics with kT -algo, then,by undoing the clustering, build “skeleton”)

- correct original NLO: αS evaluated at nodal scales and Sudakov FFs

- has been used in V/H + up to 2 jets and in V H + up to 1 jet

BNLO = α3S(µR)

[B + α

(NLO)

S V (µR) + α(NLO)

S

∫dΦrR

]BMiNLO = α2

S(mh)αS(qT )∆2g(qT ,mh)

[B(

1− 2∆(1)g (qT ,mh)

)+α

(NLO)

S V (µR)+α(NLO)

S

∫dΦrR

]

mh

qT

∆(qT , mh)

∆(qT , mh)

∆(qT , qT )

∆(qT , qT )

. µR = (m2hqT )

1/3

. log ∆f (qT ,mh) = −∫ m2

h

q2T

dq2

q2

αS(q2)

[Af log

m2h

q2+ Bf

]

. ∆(1)f

(qT ,mh) = −α(NLO)S

[ 1

2A1,f log

2 m2h

q2T

+ B1,f logm2h

q2T

]. µF = qT

� Sudakov FF included on H+jBorn kinematics

I MiNLO-improved HJ yields finite results also when 1st jet is unresolved (qT → 0)I BMiNLO ideal to extend validity of HJ-POWHEG [called “HJ-MiNLO” hereafter]

19 / 33

Page 56: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

MiNLOMultiscale Improved NLO [Hamilton,Nason,Zanderighi, 1206.3572]

I original goal: method to a-priori choose scales in multijet NLO computationI non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear,

without being resummed)I how: correct weights of different NLO terms with CKKW-inspired approach (without

spoiling formal NLO accuracy)

- for each point sampled, build the “more-likely” shower history that would haveproduced that kinematics (can be done by clustering kinematics with kT -algo, then,by undoing the clustering, build “skeleton”)

- correct original NLO: αS evaluated at nodal scales and Sudakov FFs

- has been used in V/H + up to 2 jets and in V H + up to 1 jet

BNLO = α3S(µR)

[B + α

(NLO)

S V (µR) + α(NLO)

S

∫dΦrR

]BMiNLO = α2

S(mh)αS(qT )∆2g(qT ,mh)

[B(

1− 2∆(1)g (qT ,mh)

)+α

(NLO)

S V (µR)+α(NLO)

S

∫dΦrR

]

mh

qT

∆(qT , mh)

∆(qT , mh)

∆(qT , qT )

∆(qT , qT )

. µR = (m2hqT )

1/3

. log ∆f (qT ,mh) = −∫ m2

h

q2T

dq2

q2

αS(q2)

[Af log

m2h

q2+ Bf

]

. ∆(1)f

(qT ,mh) = −α(NLO)S

[ 1

2A1,f log

2 m2h

q2T

+ B1,f logm2h

q2T

]. µF = qT

� Sudakov FF included on H+jBorn kinematics

I MiNLO-improved HJ yields finite results also when 1st jet is unresolved (qT → 0)I BMiNLO ideal to extend validity of HJ-POWHEG [called “HJ-MiNLO” hereafter]

19 / 33

Page 57: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

“Improved” MiNLO & NLOPS mergingI formal accuracy of HJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

I HJ-MiNLO describes inclusive observables at order αS

I to reach genuine NLO when fully inclusive (NLO(0)), “spurious” terms must be of relativeorder α2

S, i.e.

OHJ−MiNLO = OH@NLO +O(α2+2S ) if O is inclusive

I “Original MiNLO” contains ambiguous “O(α2+1.5S )” terms

I Possible to improve HJ-MiNLO such that inclusive NLO is recovered (NLO(0)), withoutspoiling NLO accuracy of H+j (NLO(1)).

I accurate control of subleading small-pT logarithms is needed(scaling in low-pT region is αSL

2 ∼ 1, i.e. L ∼ 1/√αS !)

Effectively as if we merged NLO(0) and NLO(1) samples, without merging differentsamples (no merging scale used: there is just one sample).

20 / 33

Page 58: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

“Improved” MiNLO & NLOPS mergingI formal accuracy of HJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

I HJ-MiNLO describes inclusive observables at order αS

I to reach genuine NLO when fully inclusive (NLO(0)), “spurious” terms must be of relativeorder α2

S, i.e.

OHJ−MiNLO = OH@NLO +O(α2+2S ) if O is inclusive

I “Original MiNLO” contains ambiguous “O(α2+1.5S )” terms

I Possible to improve HJ-MiNLO such that inclusive NLO is recovered (NLO(0)), withoutspoiling NLO accuracy of H+j (NLO(1)).

I accurate control of subleading small-pT logarithms is needed(scaling in low-pT region is αSL

2 ∼ 1, i.e. L ∼ 1/√αS !)

Effectively as if we merged NLO(0) and NLO(1) samples, without merging differentsamples (no merging scale used: there is just one sample).

20 / 33

Page 59: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

“Improved” MiNLO & NLOPS mergingI formal accuracy of HJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

I HJ-MiNLO describes inclusive observables at order αS

I to reach genuine NLO when fully inclusive (NLO(0)), “spurious” terms must be of relativeorder α2

S, i.e.

OHJ−MiNLO = OH@NLO +O(α2+2S ) if O is inclusive

I “Original MiNLO” contains ambiguous “O(α2+1.5S )” terms

I Possible to improve HJ-MiNLO such that inclusive NLO is recovered (NLO(0)), withoutspoiling NLO accuracy of H+j (NLO(1)).

I accurate control of subleading small-pT logarithms is needed(scaling in low-pT region is αSL

2 ∼ 1, i.e. L ∼ 1/√αS !)

Effectively as if we merged NLO(0) and NLO(1) samples, without merging differentsamples (no merging scale used: there is just one sample).

20 / 33

Page 60: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

“Improved” MiNLO & NLOPS mergingI Resummation formula

dq2T dy

= σ0d

dq2T

{[Cga ⊗ fa](xA, qT )× [Cgb ⊗ fb](xB , qT )× expS(qT , Q)

}+Rf

S(qT , Q) = −2

∫ Q2

q2T

dq2

q2

αS(q2)

[Af log

Q2

q2+Bf

]I If C(1)

ij included and Rf is LO(1), then upon integration we get NLO(0)

I Take derivative, then compare with MiNLO :

∼ σ01

q2T

[αS, α2S , α3

S, α4S, αSL,α

2SL,α

3SL,α

4SL] expS(qT , Q) +Rf L = log(Q2/q2

T )

I highlighted terms are needed to reach NLO(0):∫ Q2dq2T

q2T

LmαSn(qT ) expS ∼

(αS(Q2)

)n−(m+1)/2

(scaling in low-pT region is αSL2 ∼ 1!)

I if I don’t include B2 in MiNLO ∆g , I miss a term (1/q2T ) α2

S B2 expS

I upon integration, violate NLO(0) by a term of relative O(α3/2S )

I “wrong” scale in α(NLO)

S in MiNLO produces again same error

21 / 33

Page 61: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

MiNLO merging: results

[Hamilton et al., 1212.4504]

10−2

10−1

100

101

dσ/d

yH

[pb]

rati

o

yH

dσ/d

yH

[pb]

rati

o

H+PythiaHJ+Pythia

0.51.01.5

-4 -3 -2 -1 0 1 2 3 4

10−2

10−1

100

101

dσ/d

yH

[pb]

rati

o

0.51.01.5

-4 -3 -2 -1 0 1 2 3 4yH

dσ/d

yH

[pb]

rati

o

HJ+PythiaH+Pythia

I “H+Pythia”: standalone POWHEG (gg → H) + PYTHIA (PS level) [7pts band, µ = mH ]I “HJ+Pythia”: HJ-MiNLO* + PYTHIA (PS level) [7pts band, µ from MiNLO]

I very good agreement (both value and band) [!]

� Notice: band is ∼ 20− 30%

22 / 33

Page 62: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

matching NNLO with PS

I Higgs and Drell-Yan production at NNLOPS

23 / 33

Page 63: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Higgs at NNLO+PS I

I HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

H (inclusive) H+j (inclusive) H+2j (inclusive)! H-HJ @ NLOPS NLO NLO LO

!

H @ NNLOPS NNLO NLO LO

I reweighting (differential on ΦB) of “MiNLO-generated” events:

W (ΦB) =

(dσdΦB

)NNLO(

dσdΦB

)HJ−MiNLO

=α2

Sc0 + c1α3S + c2α

4S

α2Sc0 + c1α3

S + d2α4S

' 1 +c2 − d2

c0α2

S +O(α3S)

I by construction NNLO accuracy on fully inclusive observables (σtot, yH ;m``) [!]

I to reach NNLOPS accuracy, need to be sure that the reweighting doesn’t spoil theNLO accuracy of HJ-MiNLO in 1-jet region [

!

]

I notice: formally works because no spurious O(α2+1.5S ) terms in H-HJ @ NLOPS

24 / 33

Page 64: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Higgs at NNLO+PS I

I HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

H (inclusive) H+j (inclusive) H+2j (inclusive)! H-HJ @ NLOPS NLO NLO LO

!

H @ NNLOPS NNLO NLO LO

I reweighting (differential on ΦB) of “MiNLO-generated” events:

W (ΦB) =

(dσdΦB

)NNLO(

dσdΦB

)HJ−MiNLO

=α2

Sc0 + c1α3S + c2α

4S

α2Sc0 + c1α3

S + d2α4S

' 1 +c2 − d2

c0α2

S +O(α3S)

I by construction NNLO accuracy on fully inclusive observables (σtot, yH ;m``) [!]

I to reach NNLOPS accuracy, need to be sure that the reweighting doesn’t spoil theNLO accuracy of HJ-MiNLO in 1-jet region [

!

]

I notice: formally works because no spurious O(α2+1.5S ) terms in H-HJ @ NLOPS

24 / 33

Page 65: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Higgs at NNLO+PS I

I HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

H (inclusive) H+j (inclusive) H+2j (inclusive)! H-HJ @ NLOPS NLO NLO LO!H @ NNLOPS NNLO NLO LO

I reweighting (differential on ΦB) of “MiNLO-generated” events:

W (ΦB) =

(dσdΦB

)NNLO(

dσdΦB

)HJ−MiNLO

=α2

Sc0 + c1α3S + c2α

4S

α2Sc0 + c1α3

S + d2α4S

' 1 +c2 − d2

c0α2

S +O(α3S)

I by construction NNLO accuracy on fully inclusive observables (σtot, yH ;m``) [!]

I to reach NNLOPS accuracy, need to be sure that the reweighting doesn’t spoil theNLO accuracy of HJ-MiNLO in 1-jet region [!]

I notice: formally works because no spurious O(α2+1.5S ) terms in H-HJ @ NLOPS

24 / 33

Page 66: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Higgs at NNLO+PS I

I HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

H (inclusive) H+j (inclusive) H+2j (inclusive)! H-HJ @ NLOPS NLO NLO LO!H @ NNLOPS NNLO NLO LO

I reweighting (differential on ΦB) of “MiNLO-generated” events:

W (ΦB) =

(dσdΦB

)NNLO(

dσdΦB

)HJ−MiNLO

=α2

Sc0 + c1α3S + c2α

4S

α2Sc0 + c1α3

S + d2α4S

' 1 +c2 − d2

c0α2

S +O(α3S)

I by construction NNLO accuracy on fully inclusive observables (σtot, yH ;m``) [!]

I to reach NNLOPS accuracy, need to be sure that the reweighting doesn’t spoil theNLO accuracy of HJ-MiNLO in 1-jet region [!]

I notice: formally works because no spurious O(α2+1.5S ) terms in H-HJ @ NLOPS

24 / 33

Page 67: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Higgs at NNLO+PS III Variants for reweighting (W (yH), W (ΦB) ) are also possible:

W (y, pT ) = h(pT )

∫dσNNLOA δ(y − y(Φ))∫

dσMiNLOA δ(y − y(Φ))

+ (1− h(pT ))

dσA = dσ h(pT ), dσB = dσ (1− h(pT )), h =(βmH)2

(βmH)2 + p2T

I freedom to distribute “NNLO/NLO K-factor” only over medium-small pT region

- h(pT ) controls where the NNLO/NLO K-factor is distributed(in the high-pT region, there is no improvement in including it)

- β cannot be too small, otherwise resummation spoiled:for Higgs, chosen β = 1/2; for DY, β = 1

I in practice, we used

W (y, pT ) = h(pT )

∫dσNNLOδ(y − y(Φ))−

∫dσMiNLOB δ(y − y(Φ))∫

dσMiNLOA δ(y − y(Φ))

+ (1− h(pT ))

- one gets exactly (dσ/dy)NNLOPS = (dσ/dy)NNLO (no α5S terms)

- chosen h(pj1T )25 / 33

Page 68: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Settings

inputs for H@NNLOPS plots:

- results are for 8 TeV LHC

- scale choices: NNLO input with µ = mH/2, HJ-MiNLO “core scale” mH

(other powers are at qT )

- PDF: everywhere MSTW2008 NNLO

- NNLO always from HNNLO

- 6M events reweighted at the LH level

- plots after kT-ordered Pythia6 at the PS level (hadronization and MPIswitched off)

for V@NNLOPS plots:

- similar choices as above

- used also Pythia8 at the PS level (and with full hadronization and MPIswitched on in data comparison)

26 / 33

Page 69: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

H@NNLOPS (fully incl.)

I NNLO with µ = mH/2, HJ-MiNLO “core scale” mH [NNLO from HNNLO, Catani,Grazzini]

I (7Mi × 3NN) pts scale var. in NNLOPS, 7pts in NNLO

10−2

10−1

100

101

dσ/d

y[pb]

Ratio

y

dσ/d

y[pb]

Ratio

NNLOPS

HNNLO

0.91.01.1

-4 -3 -2 -1 0 1 2 3 4

10−2

10−1

100

101

dσ/d

y[pb]

Ratio

ydσ/d

y[pb]

Ratio

HNNLO

NNLOPS

0.91.01.1

-4 -3 -2 -1 0 1 2 3 4

� Notice: band is 10% (at NLO would be ∼ 20-30%) [!]

[Until and includingO(α4S), PS effects don’t affect yH (first 2 emissions controlled properly atO(α

4S) by MiNLO+POWHEG)]

27 / 33

Page 70: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

H@NNLOPS (pHT )

β =∞ (W indep. of pT ) β = 1/2

10−3

10−2

10−1

100

dσ/d

pH T[pb/G

eV]

Ratio

pH

T[GeV]

dσ/d

pH T[pb/G

eV]

Ratio

HQT

NNLOPS

0.61.01.4

0 50 100 150 200 250 300

10−3

10−2

10−1

100

dσ/d

pH T[pb/G

eV]

Ratio

pH

T[GeV]

dσ/d

pH T[pb/G

eV]

Ratio

HQT

NNLOPS

0.61.01.4

0 50 100 150 200 250 300

I HqT: NNLL+NNLO, µR = µF = mH/2 [7pts], Qres ≡ mH/2 [HqT, Bozzi et al.]

! β = 1/2 &∞: uncertainty bands of HqT contain NNLOPS at low-/moderate pTI β = 1/2: HqT tail harder than NNLOPS tail (µHqT < ”µMiNLO”)

HJ @ NNLO will allow to say more for large pT,HI β = 1/2: very good agreement with HqT resummation

[“∼ expected”, since Qres ≡ mH/2]

28 / 33

Page 71: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

H@NNLOPS (pHT )

β =∞ (W indep. of pT ) β = 1/2

10−3

10−2

10−1

100

dσ/d

pH T[pb/G

eV]

Ratio

pH

T[GeV]

dσ/d

pH T[pb/G

eV]

Ratio

NNLOPS

HQT

0.61.01.4

0 50 100 150 200 250 300

10−3

10−2

10−1

100

dσ/d

pH T[pb/G

eV]

Ratio

pH

T[GeV]

dσ/d

pH T[pb/G

eV]

Ratio

NNLOPS

HQT

0.61.01.4

0 50 100 150 200 250 300

I HqT: NNLL+NNLO, µR = µF = mH/2 [7pts], Qres ≡ mH/2I β = 1/2: NNLOPS tail→ NLOPS tail [ W (y, pT � mH)→ 1 ]

larger band (affected just marginally by NNLO, so it’s ∼ genuine NLO band)

29 / 33

Page 72: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

H@NNLOPS (pj1T )ε(p

T,veto)

#/ε

central

Anti−kT

R=1.0

pT,veto [GeV]

ε(p

T,veto)

#/ε

central

Anti−kT

R=1.0

NNLOPS

JETVHETO

0.4

0.6

0.8

1.0

0.91.0

1.1

10 20 30 50 70 100

ε(p

T,veto)

#/ε

central

Anti−kT

R=1.0

pT,veto [GeV]

ε(p

T,veto)

#/ε

central

Anti−kT

R=1.0

JETVHETO

NNLOPS

0.4

0.6

0.8

1.0

0.91.0

1.1

10 20 30 50 70 100

ε (pT,veto) =Σ(pT,veto)

σtot=

1

σtot

∫dσ θ

(pT,veto − pj1T

)

I JetVHeto: NNLL resum, µR = µF = mH/2 [7pts], Qres ≡ mH/2, (a)-scheme only[JetVHeto, Banfi et al.]

I nice agreement, differences never more than 5-6 %

� Separation of H →WW from tt bkg: x-sec binned in Njet

0-jet bin⇔ jet-veto accurate predictions needed !

30 / 33

Page 73: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Z@NNLOPS, PS level

0

50

100

150

200

250

300

350

dσ/d

y Z [p

b]

LHC 14 TeV

DYNNLOZj-MiNLONNLOPS

0.95 1

1.05

LHC 14 TeV

0.8 0.9

1

-4 -3 -2 -1 0 1 2 3 4

yZ

LHC 14 TeV

0

20

40

60

80

100

120

140

dσ/d

p T,Z

[pb/

GeV

]

LHC 14 TeV

DYNNLOZj-MiNLONNLOPS

0.9 1

1.1

LHC 14 TeV

0.8 0.9

1 1.1

0 10 20 30 40 50

pT,Z [GeV]

LHC 14 TeV

I (7Mi × 3NN) pts scale var. in NNLOPS, 7pts in NNLOI agreement with DYNNLO, scale uncertainty reduction wrt ZJ-MiNLOI notice that in Sudakov region, NNLO rescaling doesn’t alter shape from ZJ-MiNLO

31 / 33

Page 74: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

W@NNLOPS, PS level

10-1

100

101

102

103

dσ/d

p T,l

[pb/

GeV

]

LHC 7 TeV

DYNNLOWj-MiNLONNLOPS

0.9 1

1.1

LHC 7 TeV

0.9 1

1.1

0 20 40 60 80 100 120 140

pT,l [GeV]

LHC 7 TeV

100

101

102

102

102

102

102

102

102

102

dσ/d

p T,l

[pb/

GeV

]

DYNNLOWj-MiNLONNLOPS

0.95 1

1.05

0.8 0.9

1 1.1

0 10 20 30 40 50

pT,l [GeV]

I not the observables we are using to do the NNLO reweighting- observe exactly what we expect:pT,` has NNLO uncertainty if pT < MW /2, NLO if pT > MW /2

- smooth behaviour when close to Jacobian peak (also with small bins)(due to resummation of logs at small pT,V )

I just above peak, DYNNLO uses µ = MW , WJ-MiNLO uses µ = pT,W- here 0 . pT,W .MW (so resummation region does contribute)

32 / 33

Page 75: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Conclusions and Outlook

I Especially in absence of very clear singals of new-physics, accurate tools are needed forLHC phenomenology

I In the last decade, impressive amount of progress: new ideas, and automated tools

⇒ briefly reviewed how Event Generators work, and how they can be upgraded to NLO

⇒ shown results of merging NLOPS for different jet-multiplicities without merging scale

⇒ shown first working examples of NNLOPS

What next?

I NLOPS merging for higher multiplicity

I NNLOPS for more complicated processes (color-singlet in principle doable, in practice amore analytic-based approach might be needed)

I Real phenomenology in experimental analyses

Thank you for your attention!

33 / 33

Page 76: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Conclusions and Outlook

I Especially in absence of very clear singals of new-physics, accurate tools are needed forLHC phenomenology

I In the last decade, impressive amount of progress: new ideas, and automated tools

⇒ briefly reviewed how Event Generators work, and how they can be upgraded to NLO

⇒ shown results of merging NLOPS for different jet-multiplicities without merging scale

⇒ shown first working examples of NNLOPS

What next?

I NLOPS merging for higher multiplicity

I NNLOPS for more complicated processes (color-singlet in principle doable, in practice amore analytic-based approach might be needed)

I Real phenomenology in experimental analyses

Thank you for your attention!

33 / 33

Page 77: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Conclusions and Outlook

I Especially in absence of very clear singals of new-physics, accurate tools are needed forLHC phenomenology

I In the last decade, impressive amount of progress: new ideas, and automated tools

⇒ briefly reviewed how Event Generators work, and how they can be upgraded to NLO

⇒ shown results of merging NLOPS for different jet-multiplicities without merging scale

⇒ shown first working examples of NNLOPS

What next?

I NLOPS merging for higher multiplicity

I NNLOPS for more complicated processes (color-singlet in principle doable, in practice amore analytic-based approach might be needed)

I Real phenomenology in experimental analyses

Thank you for your attention!

33 / 33

Page 78: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Extra slides

34 / 33

Page 79: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

From CKKW to MiNLOI Find “most-likely” shower history (via kT -algo): Q > q3 > q2 > q1 ≡ Q0

I Evaluate αS at nodal scales

αnS (µR)B(Φn)⇒ αS(q1)αS(q2)...αS(qn)B(Φn)

* scale compensation requires µ2R = (q1q2...qn)2/n in V

I Sudakov FFs in internal and external lines of Born “skeleton”

B(Φn)⇒ B(Φn)× {∆(Q0, Q)∆(Q0, qi)...}

* Upon expansion, O(αn+1S ) (log) terms are introduced, and need to be removed

B(Φn)⇒ B(Φn)(

1−∆(1)(Q0, Q)−∆(1)(Q0, qi) + ...)

! X+ jets cross-section finite without generation cuts⇒ B with MiNLO prescription: ideal starting point for NLOPS (POWHEG) for X+ jets

35 / 33

Page 80: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

From CKKW to MiNLOI Find “most-likely” shower history (via kT -algo): Q > q3 > q2 > q1 ≡ Q0

q1

q2

q3

Q

I Evaluate αS at nodal scales

αnS (µR)B(Φn)⇒ αS(q1)αS(q2)...αS(qn)B(Φn)

* scale compensation requires µ2R = (q1q2...qn)2/n in V

I Sudakov FFs in internal and external lines of Born “skeleton”

B(Φn)⇒ B(Φn)× {∆(Q0, Q)∆(Q0, qi)...}

* Upon expansion, O(αn+1S ) (log) terms are introduced, and need to be removed

B(Φn)⇒ B(Φn)(

1−∆(1)(Q0, Q)−∆(1)(Q0, qi) + ...)

! X+ jets cross-section finite without generation cuts⇒ B with MiNLO prescription: ideal starting point for NLOPS (POWHEG) for X+ jets

35 / 33

Page 81: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

From CKKW to MiNLOI Find “most-likely” shower history (via kT -algo): Q > q3 > q2 > q1 ≡ Q0

q1

q2

q3

Q

I Evaluate αS at nodal scales

αnS (µR)B(Φn)⇒ αS(q1)αS(q2)...αS(qn)B(Φn)

* scale compensation requires µ2R = (q1q2...qn)2/n in V

I Sudakov FFs in internal and external lines of Born “skeleton”

B(Φn)⇒ B(Φn)× {∆(Q0, Q)∆(Q0, qi)...}

* Upon expansion, O(αn+1S ) (log) terms are introduced, and need to be removed

B(Φn)⇒ B(Φn)(

1−∆(1)(Q0, Q)−∆(1)(Q0, qi) + ...)

! X+ jets cross-section finite without generation cuts⇒ B with MiNLO prescription: ideal starting point for NLOPS (POWHEG) for X+ jets

35 / 33

Page 82: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

From CKKW to MiNLOI Find “most-likely” shower history (via kT -algo): Q > q3 > q2 > q1 ≡ Q0

q1

q2

q3

Q

I Evaluate αS at nodal scales

αnS (µR)B(Φn)⇒ αS(q1)αS(q2)...αS(qn)B(Φn)

* scale compensation requires µ2R = (q1q2...qn)2/n in V

I Sudakov FFs in internal and external lines of Born “skeleton”

B(Φn)⇒ B(Φn)× {∆(Q0, Q)∆(Q0, qi)...}

* Upon expansion, O(αn+1S ) (log) terms are introduced, and need to be removed

B(Φn)⇒ B(Φn)(

1−∆(1)(Q0, Q)−∆(1)(Q0, qi) + ...)

! X+ jets cross-section finite without generation cuts⇒ B with MiNLO prescription: ideal starting point for NLOPS (POWHEG) for X+ jets

35 / 33

Page 83: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

From CKKW to MiNLOI Find “most-likely” shower history (via kT -algo): Q > q3 > q2 > q1 ≡ Q0

q1

q2

q3

Q

I Evaluate αS at nodal scales

αnS (µR)B(Φn)⇒ αS(q1)αS(q2)...αS(qn)B(Φn)

* scale compensation requires µ2R = (q1q2...qn)2/n in V

I Sudakov FFs in internal and external lines of Born “skeleton”

B(Φn)⇒ B(Φn)× {∆(Q0, Q)∆(Q0, qi)...}

* Upon expansion, O(αn+1S ) (log) terms are introduced, and need to be removed

B(Φn)⇒ B(Φn)(

1−∆(1)(Q0, Q)−∆(1)(Q0, qi) + ...)

! X+ jets cross-section finite without generation cuts⇒ B with MiNLO prescription: ideal starting point for NLOPS (POWHEG) for X+ jets

35 / 33

Page 84: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

MiNLO details

MiNLO: All αS in Born term are chosen with CKKW (local) scales q1, ..., qn

αnS (µR)B ⇒ αS(q1)αS(q2)...αS(qn)B

I Normal NLO structure (µ = µR):

σ(µ) = αnS (µ)B︸ ︷︷ ︸Born

+αn+1S (µ)

(C + nb0 log(µ2/Q2)B

)︸ ︷︷ ︸

Virtual

+αn+1S (µ)R︸ ︷︷ ︸

Real

I Explicit µ dependence of virtual term as required by RG invariance:

αnS (µ′)B =[αS(µ) −nb0αn+1

S (µ) log(µ′2/µ2)]B +O(αn+2

S )

Virtual(µ′) = Virtual(µ) +αn+1S (µ)nb0 log(µ′2/µ2) B +O(αn+2

S )

⇒ σ(µ′)− σ(µ) = O(αn+2S )

I In MiNLO “scale compensation” kept if

(C + nb0 log(µ2

R/Q2)B

)⇒(C + nb0 log(µ2

R/Q2)B

)with µ2

R = (q1q2...qn)2/n

36 / 33

Page 85: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

MiNLO details

Few technicalities for original MiNLO:I µF = Q0 (as in CKKW)I Cluster with CKKW also V and R kinematics

- Actual implementation uses FKS mapping for first cluster of Φn+1

- Ignore CKKW Sudakov for 1st clustering of Φn+1 (inclusive on extra radiation)

I Some freedom in choice of α(NLO)

S (entering V , R and ∆(1)):* suggested average of LO αS

* not free for “improved” MiNLOI Used full NLL-improved Sudakovs (A1, B1, A2)

Improved MiNLO: where are terms coming from when differentiating resum. formula?1/q2

T , always from integration in SudakovαS from C(0) ×B1, ...α2

S from C(0) ×B2, ......αSL from A1 term in exponentαSL

2 from A2 term in exponent...

37 / 33

Page 86: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

NNLO+PS (pHT )

pHT spectrum:I “µHJ−MiNLO = mH ,mH , pT ”I At high pT , µHJ−MiNLO = pT

I If β = 1/2, NNLOPS→ HJ-MiNLO at high pTI NNLO/NLO ∼ 1.5, because HNNLO with µ = mH/2, µHJ−MiNLO,core = mH

10−3

10−2

10−1

100

dσ/d

pH T[pb/G

eV]

Ratio

pH

T[GeV]

dσ/d

pH T[pb/G

eV]

Ratio

1.516×HJ−MINLO PY

HJ−MINLO PY

β=∞ NNLOPS

β= 12 NNLOPS

0.7

1.0

0 50 100 150 200 250 300

38 / 33

Page 87: indico.mpp.mpg.de€¦ · Status after LHC “run I” I Scalar at 125 GeV found, study of properties begun SM s / s Best fit 0 0.5 1 1.5 2 2.5 0.28 ± = 0.92 m ZZ ® H 0.20 = 0.68

Vector boson: comparison with data (pT,Z , φ∗)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1/σ

dσ/d

p T,Z

[1/G

eV]

LHC 7 TeV

ATLAS [1406.3660 (2014)]NNLOPS (Pythia6)

0.8

1

1.2

1 10 100

pT,Z [GeV]

LHC 7 TeV

10-3

10-2

10-1

100

101

102

1/σ

dσ/dφ

*

LHC 7 TeV

ATLAS [PLB B720 (2013)NNLOPS (Pythia6)

0.9 1

1.1 1.2

0.001 0.01 0.1 1

φ*

LHC 7 TeV

I good agreement with data (PS+hadronisation+MPI)I φ∗ is an alternative probe to measure low-pT,V domain

φ∗

= tan

(π −∆φ

2

)sin θ

∗- θ∗: angle between electron and beam axis, inZ boson rest frame

- ATLAS uses slightly different definition:cos θ∗ = tanh((yl− − yl+ )/2)

39 / 33