Search for SUSY with Higgs in the final state · 2020. 9. 8. · Fake leptons Higgs Bkg. Uncert. 0)...

1
Motivations Based on “Naturalness”: lightest electro-weakinos expected to have mass of ∼O (100 GeV) Direct electro-weakino and slepton production may dominate at the LHC energy! Signatures I ˜ χ ± 1 ˜ χ 1 and ˜ ˜ production 2 leptons in final-states I ˜ χ ± 1 ˜ χ 0 2 production 1 lepton 2 b -jets in final-states Lightest Supersymmetric Particle (LSP)missing transverse energy (E miss T ) Signal Model: Simplified Models I Cross sections are determined by the masses and composition of ˜ χ ± 1 and ˜ χ 0 2 , which are assumed to be wino-like. LSP assumed to be ˜ χ 0 1 . I ˜ χ ± 1 ˜ χ 0 2 production: BR( ˜ χ ± 1 W ± ˜ χ 0 1 )=BR( ˜ χ 0 2 h ˜ χ 0 1 )=1 ; BR(h bb ) = SM-like ˜ χ ± 1 ˜ χ 1 and ˜ ˜ production 2 leptons in final-states ˜ χ ± 1 ˜ χ 1 ˜ ‘/ ˜ ν ˜ ‘/ ˜ ν p p ν/‘ ‘/ν ˜ χ 0 1 ν/‘ ‘/ν ˜ χ 0 1 ˜ ˜ p p ˜ χ 0 1 l ˜ χ 0 1 l ˜ χ ± 1 ˜ χ 1 W W p p ˜ χ 0 1 ν ˜ χ 0 1 ν ˜ χ ± 1 ˜ χ 0 2 1l + 2 b -jets I m ˜ χ ± 1 = m ˜ χ 0 2 Signal selections in ˜ χ ± 1 ˜ χ 1 and ˜ ˜ 2 leptons scenarios Sensitivity lepton flavour p 1 T p 2 T m p T, δφ E miss,rel. T m T2 SR-m T290 SR-m T2110 Slepton production e + e - , μ + μ - , e ± μ Z veto > 40 GeV > 90 GeV > 110 GeV SR-WWa SR-WWb SR-WWc Δm( ˜ χ ± 1 , ˜ χ 0 1 ) m W large Δm( ˜ χ ± 1 , ˜ χ 0 1 ) e ± μ > 35 GeV > 20 GeV < 80 GeV < 130 GeV > 80 GeV < 170 GeV < 190 GeV < 1.8 rad > 70 GeV > 90 GeV > 100 GeV Stransverse mass m T2 = min q T max m T (p 1 T , q T ), m T (p 2 T , p miss T - q T ) Relative missing transverse energy E miss,rel. T = E miss T if Δφ ,j π /2 E miss T × sin Δφ ,j if Δφ ,j /2 Signal selections in ˜ χ ± 1 ˜ χ 0 2 1 lepton 2 b -jets scenarios Sensitivity Number of b -jets Jet kinematics Jet Veto Lepton E miss T m CT m bb m T SRA SRB Low Δm = m ˜ χ ± 1 , ˜ χ 0 2 - m ˜ χ 0 1 High Δm = m ˜ χ ± 1 , ˜ χ 0 2 - m ˜ χ 0 1 Exactly two b -tagged jets (MV1 @ 70%) b -tagged jets are leading jets No fourth-leading jet with p T > 25 GeV Exactly one signal and baseline lepton > 100 GeV > 160 GeV 105 < m bb < 135 GeV 100 < m T < 130 GeV > 130 GeV Contransverse mass m CT (v 1 , v 2 )= [E T (v 1 )+ E T (v 2 )] 2 - [p T (v 1 ) - p T (v 2 )] 2 Transverse mass m T = 2p lep T E miss T - 2p lep T · p miss T Background Estimates I A simultaneous fit of the control and signal regions is performed I Overall normalizations of main backgrounds are allowed to float, along with the signal strength to account for potential signal contamination in the control regions 2 leptons analysis 1 lepton 2 b -jets analysis Dominant WW , ZZ /ZW t ¯ t background (CR) top pair-production (t ¯ t ) W +jets Non-prompt leptons Matrix Method Higgs and others Monte Carlo simulations Dominant Jet energy resolution and scaling t ¯ t normalization systematic MC generator uncertainties (VV) Jet energy scale uncertainties (POWHEG vs Sherpa) Events / 5 GeV -1 10 1 10 2 10 3 10 4 10 Data 2012 WW + Wt t t Z+jets ZV Fake leptons Higgs MC Stat+Syst Uncert )=(140,20)GeV 0 1 χ ,m ± 1 χ (m )=(200,0)GeV 0 1 χ ,m ± 1 χ (m ATLAS Preliminary = 8 TeV s -1 Ldt = 20.3 fb channel μ e <1.8 ll φ <90GeV,d T2 >20GeV,m l2 T >35GeV,p l1 T nJets=0,p μ e [GeV] T2 m 0 20 40 60 80 100 120 Data/SM 0 0.5 1 1.5 2 [GeV] bb m Events 0 20 40 60 80 100 120 = 8 TeV s Data SM Total t t single top W+jets Z+jets +W/Z t t WW/WZ/ZZ WH ZH = 130, 0 GeV 1 0 χ , m 2 0 χ , 1 ± χ m = 225, 0 GeV 1 0 χ , m 2 0 χ , 1 ± χ m ATLAS Preliminary -1 L dt ~ 20.3 fb CR2 [GeV] bb m 0 50 100 150 200 250 300 350 400 Data/SM 0 0.5 1 1.5 2 2.5 Results for ˜ ˜ 2 leptons in final-states SR-m T290 SR-m T2110 SR-WWa SR-WWb SR-WWc Expected back- ground 59.7±7.3 16.9±6.0 117.9±14.6 13.6±2.3 7.4±1.5 Observed 53 13 123 16 9 Expected σ 95 (fb) 1 +0.41 -0.28 0.62 +0.23 -0.16 1.77 +0.21 -0.15 0.51 +0.21 -0.15 0.37 +0.18 -0.11 Observed σ 95 (fb) 0.81 0.54 1.94 0.58 0.43 [GeV] miss,rel T E 50 100 150 200 250 300 Data / SM 0 0.5 1 1.5 2 Events / 20 GeV 2 4 6 8 10 Data 2012 WW + Wt t t Z+jets ZV Fake leptons Higgs Bkg. Uncert. ) = (251,10) GeV 0 1 χ ,m l ~ (m ) = (350,0) GeV 1 0 χ ,m 1 ± χ (m >90 GeV T2 >40 GeV, m miss,rel T ee nJets=0, Zveto, E =8 TeV s -1 L dt=20.3 fb ATLAS Preliminary Results ˜ χ ± 1 ˜ χ 0 2 1 lepton 2 b -jets in final-states [GeV] bb m Events 0 2 4 6 8 10 12 14 16 18 20 = 8 TeV s Data SM Total t t single top W+jets Z+jets +W/Z t t WW/WZ/ZZ WH ZH = 130, 0 GeV 1 0 χ , m 2 0 χ , 1 ± χ m = 225, 0 GeV 1 0 χ , m 2 0 χ , 1 ± χ m ATLAS Preliminary -1 L dt ~ 20.3 fb SRA [GeV] bb m 0 50 100 150 200 250 300 350 400 Data/SM 0 0.5 1 1.5 2 2.5 [GeV] bb m Events 0 2 4 6 8 10 12 14 16 18 20 = 8 TeV s Data SM Total t t single top W+jets Z+jets +W/Z t t WW/WZ/ZZ WH ZH = 130, 0 GeV 1 0 χ , m 2 0 χ , 1 ± χ m = 225, 0 GeV 1 0 χ , m 2 0 χ , 1 ± χ m ATLAS Preliminary -1 L dt ~ 20.3 fb SRB [GeV] bb m 0 50 100 150 200 250 300 350 400 Data/SM 0 0.5 1 1.5 2 2.5 Fit performed on m bb (invariant mass of the bb system) SRA SRB m bb bin Expected background 4 2 Observed (in m bb bin) 5.4 ± 3.1 2.1 ± 0.7 Asymptotic Observed σ 95 vis 0.32 fb 0.21 fb Observed S 95 obs 6.5 4.4 Expected S 95 exp 7.0 +3.1 -1.9 4.4 +2.5 -1.5 Pseudo experiments Observed σ 95 vis 0.34 fb 0.21 fb Observed S 95 obs 6.9 4.4 Expected S 95 exp 7.0 +2.8 -1.6 4.4 +1.8 -0.8 Exclusion limits No significant ex- cess has been ob- served in any of the signal regions I Using CLs method with asymptotic approximation I For each grid point: select SR with best expected limit Interpretation ˜ χ ± 1 ˜ χ 1 and ˜ ˜ 2 leptons in final-states ) [GeV] ± 1 χ m( 0 100 200 300 400 500 ) [GeV] 0 1 χ m( 0 100 200 300 400 500 ) 0 1 χ )= m( ± 1 χ m( ) theory SUSY σ 1 ± Observed limit ( ) exp σ ± Expected limit ( ATLAS 7TeV (103.5GeV) 1 ± χ LEP2 ATLAS Preliminary =8 TeV s , -1 L dt = 20.3 fb 0 1 χ ν l × 2 l) ν ( ν l ~ × 2 - 1 χ + 1 χ = 0.5 1 0 χ - m ± 1 χ m 1 0 χ - m l ~ , ν m ) theory SUSY σ 1 ± Observed limit ( ) exp σ ± Expected limit ( ATLAS 7TeV (103.5GeV) 1 ± χ LEP2 All limits at 95% CL ) [GeV] l ~ m( 100 150 200 250 300 350 ) [GeV] 0 1 χ m( 0 50 100 150 200 250 ) 0 1 χ )= m( ± l ~ m( ) theory SUSY σ 1 ± Observed limit ( ) exp σ ± Expected limit ( excluded R μ LEP ATLAS Preliminary =8 TeV s , -1 L dt = 20.3 fb 0 1 χ - l 0 1 χ + l - L,R l ~ + L,R l ~ ) theory SUSY σ 1 ± Observed limit ( ) exp σ ± Expected limit ( excluded R μ LEP All limits at 95% CL I m ˜ / [90,210] GeV (m ˜ χ 0 1 = 0) I m ˜ χ ± 1 / [130,450] GeV (m ˜ χ 0 1 = 20 GeV) ) [GeV] ± 1 χ m( 100 120 140 160 180 200 220 240 SUSY σ / σ 95% CL Limit on 1 10 ) = 0 GeV 0 1 χ m( ) SUSY theory σ 1 ± Observed limit ( ) exp σ 1 ± Expected limit ( -1 Ldt = 20.3 fb = 8 TeV: s ATLAS Preliminary ATLAS-CONF-2013-049 Interpretation ˜ χ ± 1 ˜ χ 0 2 1 lepton 2 b -jets Limits set on ˜ χ ± 1 / ˜ χ 0 2 mass (for m ˜ χ 0 1 = 0). 95% CL exclusion: I 125 < m ˜ χ ± 1 / ˜ χ 0 2 < 141 GeV I 166 < m ˜ χ ± 1 / ˜ χ 0 2 < 287 GeV at -1σ signal theoretical uncertainty. Expected exclusion range: I 225 < m ˜ χ ± 1 / ˜ χ 0 2 < 235 GeV ATLAS-CONF-2013-093 [GeV] 2 0 χ , 1 ± χ m 120 140 160 180 200 220 240 260 280 300 [GeV] 1 0 χ m 0 20 40 60 80 100 120 140 forbidden 1 0 χ + 0 h 2 0 χ ATLAS Preliminary =8 TeV s , -1 L dt = 20.3 fb SRA+SRB 1 0 χ 0 h 1 0 χ ± W 2 0 χ 1 ± χ Expected limit 68% CL ) theory SUSY σ 1 ± Observed limit ( ) exp σ 1 ± Expected limit (

Transcript of Search for SUSY with Higgs in the final state · 2020. 9. 8. · Fake leptons Higgs Bkg. Uncert. 0)...

Page 1: Search for SUSY with Higgs in the final state · 2020. 9. 8. · Fake leptons Higgs Bkg. Uncert. 0) = (251,10) GeV 1 l,mc~ ~ (m) = (350,0) GeV 1,mc~0 1 (mc± >90 GeV T2 miss,rel >40

Motivations

Based on “Naturalness”: lightest electro-weakinos expected tohave mass of ∼ O(100 GeV)⇒ Direct electro-weakino and slepton production may dominateat the LHC energy!

SignaturesI χ̃±1 χ̃

∓1 and ˜̀˜̀ production

⇒ 2 leptons in final-states

I χ̃±1 χ̃02 production

⇒ 1 lepton 2 b-jets in final-states

Lightest SupersymmetricParticle (LSP)⇒ missing transverse energy (E miss

T )

Signal Model: Simplified Models

I Cross sections are determined by the masses and composition of χ̃±1 and χ̃02, which are assumed to be wino-like. LSP assumed to be χ̃0

1.I χ̃±1 χ̃

02 production: BR(χ̃±1 → W± χ̃0

1)=BR(χ̃02 → h χ̃0

1)=1 ; BR(h→ bb) = SM-like

χ̃±1 χ̃∓1 and ˜̀˜̀ production ⇒ 2 leptons in final-states

χ̃±1

χ̃∓1

˜̀/ν̃˜̀/ν̃

p

p

ν/`

`/ν

χ̃01

ν/`

`/ν

χ̃01

˜̀

˜̀p

p

χ̃01

l

χ̃01

l

χ̃±1

χ̃∓1

W

Wp

p

χ̃01

`

ν

χ̃01

`

ν

χ̃±1 χ̃02 ⇒ 1 l + 2 b-jets

I mχ̃±1= mχ̃0

2

Signal selections in χ̃±1 χ̃∓1 and ˜̀˜̀⇒ 2 leptons scenarios

Sensitivitylepton flavour

p`1Tp`2Tm``

pT,``δφ``

Emiss,rel.T

mT2

SR-mT290 SR-mT2110Slepton production

e+e−, µ+µ−, e±µ∓

——

Z veto——

> 40 GeV> 90 GeV > 110 GeV

SR-WWa SR-WWb SR-WWc∆m(χ̃

±1 , χ̃

01) ∼ mW large ∆m(χ̃

±1 , χ̃

01)

e±µ∓

> 35 GeV> 20 GeV

< 80 GeV < 130 GeV —> 80 GeV < 170 GeV < 190 GeV

< 1.8 rad> 70 GeV —

— > 90 GeV > 100 GeV

Stransverse mass mT2 = minqT

maxmT(p`1T ,qT),mT(p`2T ,pmiss

T − qT)

Relative missing transverse energy Emiss,rel.T =

Emiss

T if ∆φ`,j ≥ π/2Emiss

T × sin ∆φ`,j if ∆φ`,j < π/2

Signal selections in χ̃±1 χ̃02 ⇒ 1 lepton 2 b-jets scenarios

SensitivityNumber of b-jets

Jet kinematicsJet Veto

LeptonEmiss

TmCTmbbmT

SRA SRBLow ∆m = mχ̃±1 ,χ̃

02−mχ̃0

1High ∆m = mχ̃±1 ,χ̃

02−mχ̃0

1Exactly two b-tagged jets (MV1 @ 70%)

b-tagged jets are leading jetsNo fourth-leading jet with pT > 25 GeVExactly one signal and baseline lepton

> 100 GeV> 160 GeV

105 < mbb< 135 GeV100 < mT< 130 GeV > 130 GeV

Contransverse mass mCT(v1, v2) =√√√√[ET(v1) + ET(v2)]2 − [pT(v1)− pT(v2)]2

Transverse mass mT =√√√√2plep

T EmissT − 2plep

T · pmissT

Background Estimates

I A simultaneous fit ofthe control and signalregions is performed

I Overall normalizationsof main backgroundsare allowed to float,along with the signalstrength to account forpotential signalcontamination in thecontrol regions

2 leptons analysis 1 lepton 2 b-jets analysisDominant WW , ZZ/ZW tt̄background (CR) top pair-production (t t̄) W +jetsNon-prompt leptons Matrix MethodHiggs and others Monte Carlo simulationsDominant Jet energy resolution and scaling t t̄ normalizationsystematic MC generator uncertainties (VV) Jet energy scaleuncertainties (POWHEG vs Sherpa)

Events

/ 5

GeV

­110

1

10

210

310

410 Data 2012WW

+ WtttZ+jets

ZVFake leptonsHiggsMC Stat+Syst Uncert

)=(140,20)GeV0

1χ∼,m

±

1χ∼(m

)=(200,0)GeV0

1χ∼,m

±

1χ∼(m

ATLAS Preliminary

= 8 TeVs ­1

Ldt = 20.3 fb∫ channel µe

<1.8ll

φ<90GeV,dT2

>20GeV,ml2

T>35GeV,p

l1

T nJets=0,pµe

[GeV]T2

m

0 20 40 60 80 100 120

Da

ta/S

M

00.5

1

1.52

[GeV]bbm

Events

0

20

40

60

80

100

120 = 8 TeVsData

SM Total

ttsingle topW+jetsZ+jets

+W/ZttWW/WZ/ZZWHZH

= 130, 0 GeV1

0χ, m

2

0χ,1

±χm = 225, 0 GeV

1

0χ, m

2

0χ,1

±χm

ATLAS Preliminary

­1L dt ~ 20.3 fb∫

CR2

[GeV]bbm0 50 100 150 200 250 300 350 400D

ata

/SM

0

0.5

1

1.52

2.5

Results for ˜̀˜̀⇒ 2 leptons in final-states

SR-mT290 SR-mT2110 SR-WWa SR-WWb SR-WWcExpectedback-ground

59.7±7.3 16.9±6.0 117.9±14.6 13.6±2.3 7.4±1.5

Observed 53 13 123 16 9Expectedσ95 (fb) 1+0.41

−0.28 0.62+0.23−0.16 1.77+0.21

−0.15 0.51+0.21−0.15 0.37+0.18

−0.11

Observedσ95 (fb) 0.81 0.54 1.94 0.58 0.43

[GeV]miss,rel

TE

50 100 150 200 250 300

Data

/ S

M

00.5

11.5

2

Eve

nts

/ 2

0 G

eV

2

4

6

8

10Data 2012

WW

+ WtttZ+jets

ZV

Fake leptons

Higgs

Bkg. Uncert.

) = (251,10) GeV0

1χ∼,ml

~(m

) = (350,0) GeV1

0χ∼,m

1

±χ∼(m

>90 GeVT2

>40 GeV, mmiss,rel

Tee nJets=0, Zveto, E

=8 TeVs ­1

L dt=20.3 fb∫ATLAS Preliminary

Results χ̃±1 χ̃02 ⇒ 1 lepton 2 b-jets in final-states

[GeV]bbm

Eve

nts

0

2

4

6

8

10

12

14

16

18

20

= 8 TeVsData SM Total

ttsingle topW+jetsZ+jets

+W/ZttWW/WZ/ZZWHZH

= 130, 0 GeV1

0χ, m

2

0χ,1

±χm = 225, 0 GeV

1

0χ, m

2

0χ,1

±χm

ATLAS Preliminary

­1L dt ~ 20.3 fb∫

SRA

[GeV]bbm0 50 100 150 200 250 300 350 400D

ata

/SM

0

0.5

1

1.52

2.5 [GeV]bbm

Eve

nts

0

2

4

6

8

10

12

14

16

18

20

= 8 TeVsData SM Total

ttsingle topW+jetsZ+jets

+W/ZttWW/WZ/ZZWHZH

= 130, 0 GeV1

0χ, m

2

0χ,1

±χm = 225, 0 GeV

1

0χ, m

2

0χ,1

±χm

ATLAS Preliminary

­1L dt ~ 20.3 fb∫

SRB

[GeV]bbm0 50 100 150 200 250 300 350 400D

ata

/SM

0

0.5

1

1.52

2.5

Fit performed on mbb(invariant mass of the bb system)

SRA SRB

mbb bin Expected background 4 2

Observed (in mbb bin) 5.4 ± 3.1 2.1 ± 0.7

Asy

mpt

otic Observed σ95

vis 0.32 fb 0.21 fbObserved S95

obs 6.5 4.4Expected S95

exp 7.0+3.1−1.9 4.4+2.5

−1.5

Pse

udo

expe

rimen

ts Observed σ95vis 0.34 fb 0.21 fb

Observed S95obs 6.9 4.4

Expected S95exp 7.0+2.8

−1.6 4.4+1.8−0.8

Exclusion limits

No significant ex-cess has been ob-served in any ofthe signal regionsI Using CLs method with

asymptotic approximationI For each grid point: select

SR with best expectedlimit

Interpretation χ̃±1 χ̃∓1 and ˜̀˜̀⇒ 2 leptons in final-states

) [GeV]±

1χ∼m(

0 100 200 300 400 500

) [G

eV

]0 1χ∼

m(

0

100

200

300

400

500

)0

1χ∼

)= m

(

±1χ∼

m(

)theory

SUSYσ1 ±Observed limit ()

expσ ±Expected limit (

ATLAS 7TeV (103.5GeV)

1

±χ∼LEP2

ATLAS Preliminary

=8 TeVs, ­1

L dt = 20.3 fb∫

0

1χ∼ν l× 2 →l) ν∼(νl

~ × 2 →

­

1χ∼

+

1χ∼

= 0.5 1

0χ∼

­ m±

1χ∼

m

1

0χ∼

­ ml~,ν∼

m

)theory

SUSYσ1 ±Observed limit ()

expσ ±Expected limit (

ATLAS 7TeV (103.5GeV)

1

±χ∼LEP2

All limits at 95% CL

) [GeV]l~

m(

100 150 200 250 300 350

) [G

eV

]0 1χ∼

m(

0

50

100

150

200

250

)0

1χ∼ )=

m(

±l~

m(

)theory

SUSYσ1 ±Observed limit (

)exp

σ ±Expected limit (

excludedR

µ∼LEP

ATLAS Preliminary

=8 TeVs, ­1

L dt = 20.3 fb∫

0

1χ∼

­ l

0

1χ∼ +

l→­

L,Rl~

+

L,Rl~

)theory

SUSYσ1 ±Observed limit (

)exp

σ ±Expected limit (

excludedR

µ∼LEP

All limits at 95% CL

I m˜̀ /∈ [90,210] GeV (mχ̃01

= 0)I mχ̃±1

/∈ [130,450] GeV (mχ̃01

= 20 GeV)

) [GeV]±

1χ∼m(

100 120 140 160 180 200 220 240

SU

SY

σ/σ

95

% C

L L

imit o

n

1

10) = 0 GeV

0

1χ∼m(

)SUSY

theoryσ1 ±Observed limit (

)exp

σ1 ±Expected limit (

­1Ldt = 20.3 fb∫ = 8 TeV: s

ATLAS Preliminary

ATLAS-CONF-2013-049

Interpretation χ̃±1 χ̃02 ⇒ 1 lepton 2 b-jets

Limits set on χ̃±1 /χ̃02 mass

(for mχ̃01

= 0). 95% CLexclusion:I 125 < mχ̃±1 /χ̃

02< 141 GeV

I 166 < mχ̃±1 /χ̃02< 287 GeV

at -1σ signal theoretical uncertainty.Expected exclusion range:I 225 < mχ̃±1 /χ̃

02< 235 GeV

ATLAS-CONF-2013-093 [GeV]2

0χ∼,

1

±χ∼

m120 140 160 180 200 220 240 260 280 300

[G

eV

]10

χ∼m

0

20

40

60

80

100

120

140

forb

idden

1

0χ∼

+

0 h

→2

0χ∼

ATLAS Preliminary

=8 TeVs, ­1

L dt = 20.3 fb∫SRA+SRB

1

0χ∼0

h1

0χ∼± W→

2

0χ∼

1

±χ∼

Expected limit 68% CL

)theory

SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (