Sb doped Ge - Agenda (Indico) · 2019. 9. 25. · 1 n-type high doping of Ge by Sb deposition and...

25
1 n-type high doping of Ge by Sb deposition and pulsed laser melting Carraro Chiara PhD student Physics – Univ. Of Padova [email protected] 4th Position Sensitive Germanium Detectors and Application Workshop (PSeGe) 16-19 Semptember 2019 – INFN LNL 16/9/2019

Transcript of Sb doped Ge - Agenda (Indico) · 2019. 9. 25. · 1 n-type high doping of Ge by Sb deposition and...

  • 1

    n-type high doping of Ge by Sb deposition and pulsed laser melting

    Carraro ChiaraPhD student Physics – Univ. Of Padova

    [email protected]

    4th Position Sensitive Germanium Detectors and Application Workshop (PSeGe)

    16-19 Semptember 2019 – INFN LNL

    16/9/2019

  • Ge-based devices

    2

    Solar cells

    Photodetectors

    Plasmonic molecularsensors

    Lasers

    Nanolectronics

    γ-Ray detectors

    [email protected] – 4th PSeGe Workshop16/9/2019

  • Ge hot topics

    3

    𝜔𝜔𝑝𝑝 ∝𝑛𝑛𝑚𝑚∗

    n-type heavy doping

    Strain engineering

    [email protected] – 4th PSeGe Workshop16/9/2019

  • Ge-based devices

    4

    Solar cells

    Photodetectors

    Plasmonic molecularsensors

    Lasers

    Nanolectronics

    γ-Ray detectors

    [email protected] – 4th PSeGe Workshop16/9/2019

  • Issues on Ge n-type doping Low active concentrations

    N < solid solubility

    (V. I. Fistul, CRC press 2004)

    (A ChroneosAPR 2014)

    High Diffusivities

    Ion ImplantationDamage

    Ge implanted with 50 KeV 6×1015 Sb/𝑐𝑐𝑚𝑚2(Bruno JAP 2010)

    [email protected] – 4th PSeGe Workshop16/9/2019 5

  • Sb deposition + PLM

    6

    Sb

    Ge substrate

    Sb Sputtering (1 – 8 nm) Sb RTP Evaporation(self-limited monolayer deposition)

    Pulsed Laser Meltingfor dopant diffusion, incorporation, and activation

    • Nd-YAG 𝜆𝜆=355 nm, 7 ns, 400 mJ/cm21 to 8 pulses• KrF 𝜆𝜆=248 nm, 25 ns, 300-700 mJ/cm21 to 8 pulses

    Sb

    Ge substrate

    Ge

    mel

    tdep

    th

    [email protected] – 4th PSeGe Workshop16/9/2019

    ( F. Sgarbossa et al., Appl. Surf. Sci. 496 (2019) )

  • Chemical profile evolution

    16/9/2019 [email protected] – 4th PSeGe Workshop 7

    • Sb incorporation at >10% concentration

    • No surface segregation

    • No Sb loss

    • Diffusion confined in molten layer

    0 2 4 6 8

    1

    10

    ML

    8nm

    4nm

    2nm

    Sb d

    ose

    (101

    5 /cm

    2 )

    PLM pulses

    1nm

    (RBS)

    1019

    1020

    1021

    1022

    0 100 200 3001018

    1019

    1020

    1021

    1022

    Nd-YAG 0.4 J/cm2

    ML 2 nm 8 nm 1 pls 8 pls

    KrF

    Sb C

    once

    ntra

    tion

    (cm

    -3)

    Depth (nm)

    ML 2 nm(0.5 J/cm2) (0.6 J/cm2)

    1 pls 8 pls

  • Dopant activation

    8

    10191020

    1021

    1022ML 1 pulse

    Sb c

    once

    ntra

    tion

    (cm

    -3) SIMS = Active

    1 nm 1 pls

    SIMS Active

    2 nm 1 pls 4 nm 1 pls 8 nm 1pls

    0 100 200

    10191020

    1021ML 8 pls

    100 200

    1 nm 8 pls

    100 200

    2 nm 8 pls

    Depth (nm)100 200

    4 nm 8 pls

    100 200

    8 nm 8 pls

    ( )22

    )()(

    )()(

    ∫∫⋅

    =dxxxne

    dxxxnRHs

    µ

    µ

    (R. Baron, G. Shifrin, O. Marsh and J. W. Mayer, and J. Menéndez, J. Appl. Phys. 40, 3702 (1969))

    • Van der Pauw – Hall measurements• Maximum active concentration extracted

    from measured RHs assuming SIMS profilesfully active below Nmax

    • Hall scattering factor rH=1

    [email protected] – 4th PSeGe Workshop16/9/2019

  • Dopant activation

    16/9/2019 [email protected] – 4th PSeGe Workshop 9

    0 50 100 150 200

    1019

    1020

    1021

    Con

    cent

    ratio

    n (c

    m-3)

    Depth (nm)

    Sb (SIMS) Electrons (VdP-Hall) Electrons (diff. VdP-Hall)

    • Alternating VdP-Hall measurements with chemical etching carrier depth profile

    • Differential Van der Pauw – Hall measurements confirm active profile.

  • Dopant activation

    10

    1 10

    1

    2

    3

    4

    5

    VdP-Hall KrF VdP-Hall Nd:YAG FTIR Nd:YAG

    Max

    . ele

    ctro

    n co

    ncen

    tratio

    n (1

    020 /c

    m3 )

    Max. Sb concentration (1020/cm3)

    100% activation

    3x1020cm-3

    • Active Sb saturates at 3x1020cm-3

    [email protected] – 4th PSeGe Workshop16/9/2019

  • FTIR

    11

    1000 2000 3000 4000 50000.0

    0.2

    0.4

    0.6

    0.8

    1.0 4 nm Sb + PLM 4 pls Drude fit

    Ref

    lect

    ance

    Wavenumber (cm-1)

    n=2,6·1020 cm-3Plasma wavelength λP ≤ 3 µm

    • Active Sb saturates at 3x1020cm-3• Plasma wavelength below 3 µm

    [email protected] – 4th PSeGe Workshop16/9/2019

    1 10

    1

    2

    3

    4

    5

    VdP-Hall KrF VdP-Hall Nd:YAG FTIR Nd:YAG

    Max

    . ele

    ctro

    n co

    ncen

    tratio

    n (1

    020 /c

    m3 )

    Max. Sb concentration (1020/cm3)

    100% activation

    3x1020cm-3

  • Resistivity and Mobility

    12

    P, As

    Sb

    P, As

    Sb

    • Active Sb saturates at 3x1020cm-3• Plasma wavelength below 3 µm• Ultralow resistivity• High mobility

    [email protected] – 4th PSeGe Workshop16/9/2019

    1 10

    1

    2

    3

    4

    5

    VdP-Hall KrF VdP-Hall Nd:YAG FTIR Nd:YAG

    Max

    . ele

    ctro

    n co

    ncen

    tratio

    n (1

    020 /c

    m3 )

    Max. Sb concentration (1020/cm3)

    100% activation

    3x1020cm-3

    10-4

    10-3

    Res

    istiv

    ity (Ω

    cm

    )

    Our data (Nd:YAG) Our data (KrF) Cuttriss et al. 1963 Xu et al. 2016 Sb fit, (Xu 2016) P and As (Cuttris 1963)

    1020 5x1020

    100

    200

    300

    400

    Sb curve (calculated from Xu 2016)

    P and As (Cuttris 1963)

    Hal

    l Mob

    ility

    (cm

    2 /Vs)

    Hall (γH=1) electron concentration (cm-3)

  • 1 10

    1

    2

    3

    4

    5

    VdP-Hall KrF VdP-Hall Nd:YAG FTIR Nd:YAG

    Max

    . ele

    ctro

    n co

    ncen

    tratio

    n (1

    020 /c

    m3 )

    Max. Sb concentration (1020/cm3)

    100% activation

    3x1020cm-3

    Substitutionality (c-RBS dip)

    13

    • C-RBS: Sb ∼100 % nearly substitutional with small displacements

    (José Coutinho, et al., J. Mater. Sci. Mater. Electron. 2007)(A. Chroneos, J. Appl. Phys. 2010)

    • After PLM inactive Sb is in the form of verysmall SbnV complexes.

    [email protected] – 4th PSeGe Workshop16/9/2019

  • HRXRD strain depth profiling

    14

    • Excellent cristallinity• Pseudomorphicity of doped layer• No sign of extended defects• Strain depth profiles extracted

    32.6 32.8 33.0 33.2

    Inte

    nsity

    (a.u

    .)

    θ (°)

    Ge (004) Rocking Curve1020

    1021

    4nm Sb + PLM 8 pls

    Sb c

    once

    ntra

    tion

    (cm

    -3)

    0 50 100 15010-4

    10-3

    10-2

    mis

    fit =

    (aG

    eSb

    rel

    -aG

    e)/a G

    e

    Depth (nm)

    [email protected] – 4th PSeGe Workshop16/9/2019

    -0,02 0,00 0,02

    -0,04

    -0,02

    0,00

    0,024nm Sb+Nd:YAG 8 pulses

    ∆Q⊥ (Å

    -1)

    ∆Q// (Å-1)

    Ge (444) Intensity

    -0,02 0,00 0,02

    ∆Q// (Å-1)

    1

    1E+01

    1E+02

    1E+03

    1E+04

    1E+05

    1E+062nm Sb+KrF@600mJ/cm2 1 pulse

  • HRXRD strain depth profiling

    15

    1020 1021

    0,1

    1 Our data Xu et al. 2016 Sb 100% active

    (Xu, 2016)

    mis

    fit =

    (aG

    eSb

    rel

    -aG

    e)/a G

    e

    Max. Sb concentration (cm-3)

    • At low concentrations misfit aligns with literature data for 100% active Sb

    • At high concentrations misfit continue to increase up to 0.7%

    [email protected] – 4th PSeGe Workshop16/9/2019

  • Conclusions

    16

    • The combination of Sb deposition and PLM provides an extremely efficient doping technique.

    • Carrier concentration up to 3x1020cm-3 with record low resistivityand excellent mobility

    • No bulk contamination as consequence of PLM

    [email protected] – 4th PSeGe Workshop16/9/2019

  • Conclusions

    17

    • The combination of Sb deposition and PLM provides an extremely efficient doping technique.

    • Carrier concentration up to 3x1020cm-3 with record low resistivityand excellent mobility

    • No bulk contamination as consequence of PLM• Pseudomorphic layers Ge:Sb layers with no extended defects• FTIR reports plasma wavelengths below 3 µm in the MIR range

    useful for gas sensing applications

    • Inactive Sb is nearly substitutional with small displacement, compatible with very small SbnV clusters.

    [email protected] – 4th PSeGe Workshop16/9/2019

  • 16/9/2019 [email protected] – 4th PSeGe Workshop 18

    Thanks for yourattention!

  • [email protected] – 4th PSeGe Workshop17/9/2019

  • 16/9/2019 [email protected] – 4th PSeGe Workshop 20

  • Chemical profile evolution

    21

    0 50 100 150 200

    1019

    1020

    1021

    1022

    Sb C

    once

    ntra

    tion

    (cm

    -3)

    Depth (nm)

    Monolayer

    0 50 100 150 200

    1 nm

    Depth (nm)

    0 50 100 150 200

    8 nm

    Depth (nm)

    1 pulse 2 pulses 4 pulses 8 pulses

    • Sb incorporation at >10% concentration

    • No surface segregation

    • No Sb loss

    [email protected] – 4th PSeGe Workshop17/9/2019

    0 2 4 6 8

    1

    10

    ML

    8nm

    4nm

    2nm

    Sb d

    ose

    (101

    5 /cm

    2 )

    PLM pulses

    1nm

    (RBS)

  • 23

    0 1x1020 2x1020 3x1020 4x10200,000

    0,001

    0,002

    0,003

    0,004

    0,005

    0,006

    0,007

    Our Data 100% active

    (Xu et al. 2016)

    mis

    fit (%

    )

    Max. active concentration (cm-3)

    [email protected] – 4th PSeGe Workshop17/9/2019

  • [email protected] – 4th PSeGe Workshop17/9/2019

  • 25

    A. Chroneos, R. W. Grimes, B. P. Uberuaga, S. Brotzmann, and H. Bracht, Appl. Phys. Lett. 91, 192106 (2007).

    [email protected] – 4th PSeGe Workshop17/9/2019

  • HRXRD

    26

    0 1x1021 2x1021 3x1021 4x1021 5x10210.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Ge:Sb Fully active (Xu, 2016) Ge:Sb Size contribution (Xu, 2016)

    mis

    fit (%

    )

    Max. Sb concentration (cm-3)

    [email protected] – 4th PSeGe Workshop17/9/2019

    n-type high doping of Ge by Sb deposition and pulsed laser melting Ge-based devicesGe hot topicsGe-based devicesDiapositiva numero 5Sb deposition + PLMChemical profile evolutionDopant activationDopant activationDopant activationFTIRResistivity and MobilitySubstitutionality (c-RBS dip)HRXRD strain depth profilingHRXRD strain depth profilingConclusionsConclusionsDiapositiva numero 18Diapositiva numero 19Diapositiva numero 20Chemical profile evolutionDiapositiva numero 23Diapositiva numero 24Diapositiva numero 25HRXRD