Reactor design equation - Packed bed -...

15

Click here to load reader

Transcript of Reactor design equation - Packed bed -...

Page 1: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Catalytic Reaction Kinetics

Why Catalytic Reaction Kinetics ?Derivation rate expressionsSimplifications– Rate determining step– Initial reaction rate

Limiting cases– Temperature dependency– Pressure dependency

Examples

Catalysis Engineering - Kinetics

Reactor design equation - Packed bed

ν η= ⋅ ⋅ii W

dF rdW

stoichiometric coefficient i

catalyst effectiveness

rate expression

Molar flow i

‘bed coordinate’

Dimension of rate?

Catalysis Engineering - Kinetics

Rate expression

A + B C + DCatalyst

How much detail ?

A + B + * AB* * + C + D

A + B [intermediates] C + D

etc.

overall rate expression?

.....),,,,( catalystKkTpfr eqi=

conditions

rate constant(s) thermodynamics

Catalysis Engineering - Kinetics

Rate expression – Gas phase reaction

2CBA ckcckr ⋅−⋅⋅= −+

forward ratebackwardchance to success

amount of A × chance to meet B

Page 2: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Role of catalyst?

Concentrating reactantsadsorption/complexation

Providing alternative reaction pathcatalyst selectivityother activation energy barrier

But:– other components adsorb, too

block ‘active sites’– fixed number of ‘active sites’

rate constant

affect rate

affect rate

affect rate

other form rate expression expectedother form rate expression expectedCatalysis Engineering - Kinetics

Rate vs. pressure/concentration ?

ratemol/s.gcat

pressure / kPa

• fixed number of active sites• mono & bimolecular reactions

Catalysis Engineering - Kinetics

Rate expression – Catalysed reaction

CadsCB

adsA scksckr θθ ⋅⋅−⋅⋅= −+

forward ratebackwardchance to success

amount of A adsorbed

chance of adjacent B adsorbed

Note:• cgas and cads differ• ratios components differ

Catalysis Engineering - Kinetics

Kinetics

Rate expressions in principle crucial for– design– process start-up and control– process development and improvement– selection reaction model

Often used in catalysis– power rate models– models based on elementary processes

• extrapolation more reliable• intellectually process better understood

mj

ni ppkr ⋅⋅=

[ ]( )2

222

1/

BBAA

eqBABAT

pKpKKppKKksN

r++

−=

Page 3: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Simple example: reversible reactionA B

A B

A* B*

‘Elementary processes’

‘Langmuir adsorption’

monomoleculare.g. isomerization

Catalysis Engineering - Kinetics

Elementary processes

Rate expression follows from rate equation

r r r k p N k NA T T A= − = −− −1 1 1 1θ θ*

r r r k N k NT A T B= − = −− −2 2 2 2θ θ

r r r k N k p NT B B T= − = −− −3 3 3 3θ θ *

Eliminate unknown surface occupancies

Catalysis Engineering - Kinetics

Site balance:(3.5)

Steady state assumption:(3.6-7)

Rate expression:(3.9)

Elementary processes contd.

1= + +θ θ θ* A B

0

0

=

=

dtddt

d

B

A

θ

θ

321

321

:with(......)(......)(.....)

)/(

KKKK

ppKppkkkN

r

eq

BA

eqBAT

=

++−

=

MicrokineticsMichaelis-Menten

Algebraic eqs.

Catalysis Engineering - Kinetics

Quasi-equilibrium / rate determining step

r1

r2

r3

r-1

r-2

r-3

r

rate determining

‘quasi-equilibrium’

r = r2 - r-2

Page 4: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Rate expression - r.d.s.

r r r k N k NT A T B= − = −− −2 2 2 2θ θ

Rate determining step:

Eliminate unknown occupancies

Quasi-equilibrium:r r k p N k NA T T A1 1 1 1= =− − θ θ*

So: θ θ

θ θ

A A

BB

K p K kk

pK

= ⋅ =

= ⋅

−1 1

1

1

3

*

*

with:

Catalysis Engineering - Kinetics

Rate expression, contd.

Substitution:

{ }r r r k N K p k N p Kr k N K p k p k K K

T A T B

T A B

= − = −

= −− −

2 2 2 1 2 3

2 1 2 2 1 3

θ θθ

* *

*

//

K K K K ppeq

B

A eq

= =

1 2 3where:

Unknown still θ*

Catalysis Engineering - Kinetics

Rate expression, contd.

Site balance:

{ }1 1 1 3= + + = ⋅ + +θ θ θ θ* * /A B A BK p p K

( )θ * /=

+ +1

1 1 3K p p KA B

Finally:

{ }( )

rk N K p p K

K p p KT A B eq

A B

=−

+ +2 1

1 31/

/

Catalysis Engineering - Kinetics

Surface occupancies

Empty sites

Occupied by A

Occupied by B

( )θ BB

A B

p KK p p K

=+ +

//

3

1 31

( )θ AA

A B

K pK p p K

=+ +

1

1 31 /

( )θ * /=

+ +1

1 1 3K p p KA B

BKK

=3

1

Page 5: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Other steps rate determining

Adsorption r.d.s

Surface reaction r.d.s.

Desorption r.d.s.

{ }( )r

k N K p p KK p p K

T A B eq

A B

=−

+ +2 1

1 31/

/

{ }( )r

k N K K p p KK K p

T A B eq

A

=−

+ +3 1 2

2 11 1/

{ }( )r

k N p p KK p K

T A B eq

B

=−

+ +1

2 31 1 1/

/ /

Rule of thumb:Generally surface reaction r.d.s.Catalysis Engineering - Kinetics

Thermodynamics

Equilibrium constant

Adsorption constant

Reaction entropy

Reaction enthalpy

Adsorption enthalpy,<0(J/mol)

Adsorption entropy, <0(J/mol K)

atm-1

oooeq STTHTGKRT ∆−∆=∆= )()(ln

)(, TGi

oifi∑ ∆= ν

RTH

RSK

oo

A∆

−∆

=ln

Data sources: Handbooks, API,JANAFChemsage, HSC

Catalysis Engineering - Kinetics

Langmuir adsorption

Uniform surface (no heterogeneity)Discrete number of sitesNo interaction between adsorbed species

A + * A*

AA

AAA pK

pK+

=1

θ

KA /bar -1

0.1

1.0

10100

pA /bar

1.0

0.8

0.6

0.4

0

0.2

0 0.2 0.4 0.6 0.8 1.0

Catalysis Engineering - Kinetics

Multicomponent adsorption / inhibition

Langmuir adsorption

( )θ AA

A i i

K pK p K p

=+ + ∑

1

11

Inhibitors

Page 6: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Langmuir adsorption model

Generally used– although nonlinear, mathematically simple– simple physical interpretation– rather broadly applicable

• multicomponent adsorption• non-uniform surfaces

– ‘compensation effect’– very weak and strong sites do not contribute much

to the rate• for microporous media (activated carbons) often

not satisfactory

Catalysis Engineering - Kinetics

Dissociative adsorption

H2 + 2* 2H*

( )( )

θHH H

H H

K p

K p=

+2 2

2 2

0.5

0.51

Two adjacent sites needed

Catalysis Engineering - Kinetics

Initial rate expressions

Forward ratesProduct terms negligible

r k p A= '0 r k p

K pA

A A=

+

'0

01 r k= '

Adsorption Surface Desorption

r0

T1

T2

T3

pApA pA

T1

T2

T3

T1

T2

T3

See tutorial Catalysis Engineering - Kinetics

Dual site reaction :A + B C

A + * ↔ A*

B + * ↔ B*

A* + B* ↔ C* + *

C* ↔ C + *

(r.d.s.)

{ }{ }2

421

213

/1/KppKpKKpppKKNsk

rCBA

eqCBAT

+++

−=

Page 7: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Dual site reaction, contd.

{ }*3333 θθθθ CBAT kkNsrrr −− −⋅=−=

Number of neighbouring sites (here: 6)

Catalysis Engineering - Kinetics

More than one reactant

• One-site models

• Two-site models

e.g. hydrogenation, oxidation

dual site reaction

single site reaction

• Number of sites conditions dependent

)1(1 BABAA

BAABATABT pKpK

ppKKkNkNr++

== θ

2)1( BBAA

BBAATBAT pKpK

pKpKskNskNr++

== θθ

)1()1( BBAA

BBAATBAT pKpK

pKpKskNskNr++

== •∗θθ

( )( ){ }21

210

1 AA

AATT pK

pKNN+

=

different sites

optimal surface concentrationsoptimal adsorption strengths

Catalysis Engineering - Kinetics

Langmuir-Hinshelwood/Hougen-Watson models (LHHW)

r kinetic factor driving fo rceadsorp tion te rm

=⋅( ) ( )

( )n

includes NT, k(rds)For: A+B C+D

pApB-pCpD/Keq

molecular: KApAdissociative: (KApA)0.5 = 0, 1, 2...

number species inand before r.d.s.

Catalysis Engineering - Kinetics

What about observed: reaction orderactivation energy ?

Determination:

ii p

rnlnln

∂∂

=

ln r

ln pi

slope = order ni

ln r

1/T

slope = -Eaobs/R

TrRTE obs

a ∂∂

=ln2

LHHW models ? ( )r k N K p

K p K pT A A

A A B B

=+ +

2

1

Page 8: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Reaction order - Activation energy

( )r k N K p

K p K pT A A

A A B B

=+ +

2

1rate expression

Reaction order

Activation energy

BB

AA

nn

θθ

−=

−= 1

( ) BBAAaobsa HHEE ∆−∆−+= θθ12

• depend strongly on occupancy!• vary during reaction

limiting cases?

Catalysis Engineering - Kinetics

Limiting cases - forward ratesSurface reaction r.d.s. ( )

r k N K pK p K p

T A A

A A B B

=+ +

2

1

1. Strong adsorption Ar k NT= 2

E Eaobs

a= 2

A*

B*

A*#

Ea2

Catalysis Engineering - Kinetics

Limiting cases - forward rates

2. Weak adsorptionr k N K pT A A= 2

Surface reaction r.d.s. ( )r k N K p

K p K pT A A

A A B B

=+ +

2

1

E E Haobs

a A= +2 ∆

A*

A(g) + *

A*#

Ea2

Catalysis Engineering - Kinetics

Limiting cases - forward rates

3. Strong adsorption B

r k N K pK p

T A A

B B

= 2

Surface reaction r.d.s. ( )r k N K p

K p K pT A A

A A B B

=+ +

2

1

E E H Haobs

a A B= + −2 ∆ ∆

A*#

B* + A

B+*+AEa2

A*

Page 9: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Cracking of n-alkanes over ZSM-5J. Wei I&EC Res.33(1994)2467

AA pKkr 20 =

Aaobsa HEE ∆+= 2

Carbon number

negative!?Ea2

Eaobs

∆HA

kJ/mol

200

100

-200

-100

0

0 5 10 15 20

Catalysis Engineering - Kinetics

n-Alkanes cracking

Energy diagram

Initial state Transition state

Adsorbed state

A + *

∆HadsEa2

Ea,obs

A*B*,C*

Catalysis Engineering - Kinetics

Observed temperature behaviour

• T higher coverage lower• Highest Ea most favoured

Change in r.d.s.

1/T

ln robs

desorption r.d.s.

adsorption r.d.s.

Catalysis Engineering - Kinetics

Catalytic reaction kinetics, summary

Langmuir adsorption– uniform sites, no interaction adsorbed species,

finite number of sites, multicomponentRate expression derivation– series of elementary steps– steady state assumption, site balance – quasi-equilibrium / rate determining step(s)– initial rates (model selection)

LHHW models– inhibition, variable reaction order, activation

energy

simpler

mechanism kinetics

Page 10: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Hydrodesulphurization kineticsSie, AIChE-J 42(1996)3498

• Apparent second order behaviour• H2S inhibits strongly

Example HDS vacuum gasoil

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1/LHSV (h)

0.00.20.40.60.81.01.21.41.61.82.02.2

1/S-

1/S

0(1

/wt.%

)

GasoilCoMo-aluminatrickle flowL=0.2-0.4 m

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

bed length

c

concentration

conversion

fast decrease followedby slow decrease

Catalysis Engineering - Kinetics

Composition oil fractions

S

S

SR R

S

RS S

R

RS

R

0 5 10 15 20 25 30

Vacuum gasoil

Simulated distillation b.p.

Sulphur compounds

Thioethers

ThiopheneBenzthiophene

Dibenzthiophene

Substituteddibenzthiophene

complex mixturesdifferent reactivities⇒lumping

Catalysis Engineering - Kinetics

Simulated profiles - HDS reactivity lumping

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

bed length

conc

entra

tion

Three lump model: first order reactionsSimulated model data:2nd orderk=10 m3/mol.sc0=2 mol/m3

Three lump model:1st ordersk1=36.1 s-1 c01=1.23k2=16.0 s-1 c02=0.59k3=7.5 s-1 c03=0.18

sum

1

23

Three lump model adequateInhibition through LHHW models Which groups lumped?

⇒model studies

Catalysis Engineering - Kinetics

Kinetic coupling between catalytic cycles

Bifunctional catalysis: Reforming

Isomerization n-pentane: n-C5 -> i-C5

Pt-function: n-C5 -> n-C5=

surface diffusionAcid function: n-C5= -> i-C5=

surface diffusionPt-function: i-C5= -> i-C5

Coupled catalytic cycles on different sites

low concentrationclose proximity

See tutorial

Page 11: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Initial rates - CO hydrogenation over Rh

Van Santen et al.

Kinetic model

1. CO + * ↔ CO*2. CO* + * → C* + O* (r.d.s.)

r sN kT CO0 2= ⋅θ θ *

{ }r sk N K p

K pT CO CO

CO CO0

221

=+

Initial rate

0.20.4

0.60.8

1.0

Occupancy (-)400

450500

550600

Temperature (K)

0

200

400

600

800

Rat

e

Catalysis Engineering - Kinetics

Catalysis Engineering - Kinetics

Catalysed N2O decomposition over oxidesWinter, Cimino

Rate expressions:

( )( )rk p

p Kobs N O

O

=+

2

21 3

0.5

r k pobs N O= ⋅ 2

( )r k p

pobs

N O

O

= ⋅ 2

2

0.5

1st order

strong O2 inhibition

moderate inhibition

Also: orders 0.5-1water inhibition

= Explain / derive =

Catalysis Engineering - Kinetics

N2O decomposition over Mn2O3

2 N2O 2N2 + O2

Vannice et al. J.Catal. 1996

Rate expression

( )( )r k N K pK p p K

T N O

N O O

=+ +

2 1

1 30.5

2

2 21

Kinetic model

1. N2O + * ↔ N2O*2. N2O* → N2 + O*3. 2 O* ↔ 2* + O2

Page 12: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

N2O decomposition over Mn2O3Vannice et al. 1996

0.0 2.0 4.0 6.0 8.0 10.0

pO2 / kPa

0.0

0.1

0.2

0.3

0.4

r / 1

0-6m

ol.s

-1.g

-1

Oxygen inhibitionorder N2O ~0.78

Eaobs= 96 kJ/mol

648 K

638 K623 K608 K598 K

= Explain =

pN2O = 10 kPa

Catalysis Engineering - Kinetics

N2O decomposition over Mn2O3Vannice et al. 1995

Kinetic model

1. N2O + * ↔ N2O*2. N2O* → N2 + O*3. 2 O* ↔ 2* + O2

Rate expression

( )( )5.031

12

22

2

1 KppKpKNkr

OON

ONT

++=

Values

Ea2 130= kJ / mol

K J/mol 109SkJ/mol 92

3

3

=∆=∆H

K J/mol 38SkJ/mol 29

1

1

−=∆−=∆H

= Thermodynamically consistent =

Catalysis Engineering - Kinetics

Ethanol dehydrogenationFranckaerts &Froment

C2H5OH ↔ CH3CHO + H2

Model:

1. A + * ↔ A*2. A* + * ↔ R* + S* (r.d.s.)3. R* ↔ R + *4. S* ↔ S + *

= Derive rate expression =

Cu-Co cat.

Catalysis Engineering - Kinetics

Initial rates - linear transformation

Full expression

Initial rate

After rearrangement

{ }{ }

rk s N K p p p K

K p K p K pT A A R S eq

A A R R S S

=−

+ + +2

21

/

{ }r k K p

K pA A

A A0 21

=+

pr k K

Kk K

pA

A

A

AA

0

1= + ⋅

y a b x= + ⋅linear form:

linear least squares fittrends, positive parameters

Ethanol dehydrogenation

Page 13: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Kinetic studies

( ) ( )oii

iio

i

i

FWxrr

FWddx

⋅−=⇒⋅−=

νν

Rate equation

= model selection == rate parameters =

Differential reactor:• plug flow, low conversion• CSTR

Take care catalyst effectiveness = 1 !

Integral reactor

Catalysis Engineering - Kinetics

Model selection

Mechanistic informationInitial rate measurementsFit data on rate expressions (non-linear least squares)Best model:– low SSR (sum of squares of residuals)– no trending in residuals– parameters significant– parameters obey thermodynamics– ‘linearization’

Catalysis Engineering - Kinetics

Data fitting - Parameter estimation

Linear least squares - straightforwardNonlinear least squares methods:– Simplex / Powell etc. (iterative)– Levenberg-Marquardt (gradient)

( )O F Min x x

x f k K

obs calci

calc j

. .

(.... , ...)

= −

=

∑ 2

with:

to be estimated

= initial parameters values needed =

Catalysis Engineering - Kinetics

Model selection

Divergence rival modelsExperimental design (sequential)

po

rate

model 1

model 2

experimental range

Page 14: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics Catalysis Engineering - Kinetics

N2O decomposition over ZSM-5 (Co,Cu,Fe)

2 N2O 2N2 + O2

Kapteijn et al. 11th ICC,1996

Rate expression

( )r k N pk kT N O=

+1

1 2

2

1

Kinetic model

1. N2O + * → N2 + O*2. N2O + O*→ N2 + O2 + *

no oxygen inhibition

Catalysis Engineering - Kinetics

N2O decomposition over ZSM-5 (Co,Cu,Fe)Kapteijn et al. 11th ICC,1996

Rate expression

( )r k N pk k K p

T N O

O

=+ +

1

1 2 3

2

21

Oxygen inhibition model

1. N2O + * → N2 + O*2. N2O + O*→ N2 + O2 + *3. O2 + * ↔ *O2

0 2 4 6 8 10

p(O2) / kPa

0.0

0.2

0.4

0.6

0.8

1.0

X(N

2O)

Fe-ZSM-5 Co-ZSM-5

Cu-ZSM-5

743 K

833 K

793 K

733 K688

773 K

Catalysis Engineering - Kinetics

Effect of CO on N2O decomposition

0.0 0.5 1.0 1.5 2.0

molar CO/N2O ratio

0.0

0.2

0.4

0.6

0.8

1.0

X(N

2O)

Co-ZSM-5 (693 K)

Cu-ZSM-5 (673 K)

Fe-ZSM-5 (673 K)

CO removes oxygen from surfaceso ‘enhances’ step 2, oxygen removal

now observed: rate of step 1 r1 = k1 NT pN2O

increase: ~2, >3, >100

CO + O*→ CO2 + *

CO + * ↔ CO* (Cu+)

Page 15: Reactor design equation - Packed bed - .xyzlibvolume2.xyz/.../designofpackedbedreactorsnotes1.pdf · Catalysis Engineering - Kinetics Role of catalyst? Concentrating reactants adsorption/complexation

Catalysis Engineering - Kinetics

Effect of CO on N2O decomposition

rate without CO rate with CO

r k N pT N O= 1 2

So k1/k2 = : 1 Co>2 Cu>100 Fe

ratio = 1 + k1/k2 and:21

21* 1 kk

kkO +

θ O* = 0.7>0.9>0.99

( )21

1

12

kkpNkr ONT

+=

Catalysis Engineering - Kinetics

Apparent activation energies N2O decompositionCO/ N2O = 2

Cu ( )r k N pk k K p

k N pK p

T N O

CO CO

T N O

CO CO=

+ +≈1

1 2

12 2

1

Co, Fe

r k N pT N O= 1 2

E Eaobs

a= 1

E E Haobs

a CO= +1 ∆

Apparent activation energies (kJ/mol)

only N2O CO/N2O=2

Co 110 115

Cu 138 187

Fe 165 78

Catalysis Engineering - Kinetics

Apparent activation energies N2O decompositionCO/ N2O = 0

Co,Cu

Fe

( )r k N pk kT N O=

+1

1 2

2

1

r k N pT N O= 2 2 E Eaobs

a= 2

E E Eaobs

a a= mix( )1 2,

Apparent activation energies (kJ/mol)

only N2O CO/N2O=2

Co 110 115

Cu 138 187

Fe 165 78

Catalysis Engineering - Kinetics

Kinetic coupling between catalytic cyclesadsorption effect on selectivity

Hydrogenation: butyne -> butene -> butaneA1 A2 A3

butyne and butene compete for the same sitesbut: K1 >> K2resulting high selectivity for butene (desired) possibleeven when k2 > k1

since:22

112,1 Kk

KkS =

Meyer and Burwell (JACS 85(1963)2877) mol%:2-butyne 22.0cis-2-butene 77.2trans-2-butene 0.71-butene 0.0butane 0.1