Quantum Mechanics Formulas - Massachusetts - MITweb.mit.edu/birge/Public/formulas/quantum.pdf ·...

2
Quantum Mechanics Formulas Constants ¯ h h 2π De Broglie–Einstein Relations E p hk Dispersion Relations ω light (k)= ck ω electron (k)= ¯ hk 2 2M Heisenberg Uncertainty Principle Δp x Δx ¯ h/2 ΔE Δt ¯ h/2 Δx = x 2 -x 2 Schroedinger Equation - ¯ h 2 2m 2 Ψ(r,t)+ V (r,t)Ψ(r,t)= i¯ h Ψ(r,t) ∂t Time-Independant SWE Ψ(r,t)= ψ(r)ϕ(t) - ¯ h 2 2m 2 ψ(r)+ V (r)ψ(r)= E ψ(r) ϕ(t)= e -iEt/¯ h Probability Current Density j = - i¯ h 2m * Ψ - ΨΨ * ) Free Electron Beam ψ(x)= A 1 e ikx + A 2 e -ikx ; k = s 2m e (E- V 0 ) ¯ h 2 R = A * 2 A 2 A * 1 A 1 Expectation Values and Operators ˆ p = -i¯ hˆ E = i¯ h ∂t ˆ H = - ¯ h 2 2m 2 + V (r) ρ(r,t)= |Ψ| 2 * (r,t)Ψ(r,t) f = Z V Ψ * (r,t) ˆ f Ψ(r,t) dV = Ψ| ˆ f |Ψ Harmonic Oscillator V (x)= 1 2 2 x 2 ψ 0 (x)= π¯ h 1/4 e -x 2 /2L 2 ψ 0 (Q)= 1 π 1/4 e -Q 2 L = r ¯ h E 0 = ¯ 2 E n = n + 1 2 ¯ h Q x/L - d 2 dQ 2 + Q 2 ψ = E E 0 ψ = ˆ ˆ a + 1 2 - d dQ + Q ˆ a - 1 2 d dQ + Q H n (Q)=2QH n-1 (Q) - 2(n - 1)H n-2 (Q) ψ n (Q)= A n H n (Q)e -Q 2/2 A 2 n = A 2 n-1 2n ψ n (Q)= r 2 n " n-1 (Q) - r n - 1 2 ψ n-2 (Q) # 1

Transcript of Quantum Mechanics Formulas - Massachusetts - MITweb.mit.edu/birge/Public/formulas/quantum.pdf ·...

Page 1: Quantum Mechanics Formulas - Massachusetts - MITweb.mit.edu/birge/Public/formulas/quantum.pdf · Quantum Mechanics Formulas Constants ¯h ≡ h 2π De Broglie–Einstein Relations

Quantum Mechanics Formulas

Constants

h ≡ h

De Broglie–Einstein Relations

E = hω

p = hk

Dispersion Relations

ωlight(k) = ck

ωelectron(k) =hk2

2M

Heisenberg Uncertainty Principle

∆px∆x ≥ h/2

∆E∆t ≥ h/2

∆x =⟨x2

⟩− 〈x〉2

Schroedinger Equation

− h2

2m∇2Ψ(r, t) + V (r, t)Ψ(r, t) = ih

∂Ψ(r, t)∂t

Time-Independant SWE

Ψ(r, t) = ψ(r)ϕ(t)

− h2

2m∇2ψ(r) + V (r)ψ(r) = Eψ(r)

ϕ(t) = e−iEt/h

Probability Current Density

j = − ih

2m(Ψ∗∇Ψ−Ψ∇Ψ∗)

Free Electron Beam

ψ(x) = A1eikx +A2e

−ikx; k =

√2me(E − V0)

h2

R =A∗2A2

A∗1A1

Expectation Values and Operators

p = −ih∇

E = ih∂

∂t

H = − h2

2m∇2 + V (r)

ρ(r, t) = |Ψ|2 = Ψ∗(r, t)Ψ(r, t)

〈f〉 =∫

∀V

Ψ∗(r, t) f Ψ(r, t) dV = 〈Ψ|f |Ψ〉

Harmonic Oscillator

V (x) =12mω2x2

ψ0(x) =mω

πh

1/4e−x2/2L2

ψ0(Q) =1π

1/4

e−Q2

L =

√h

E0 =hω

2

En =(n+

12

)h

Q ≡ x/L(− d2

dQ2+Q2

)ψ =

EE0ψ = hψ

a+ ≡ 1√2

(− d

dQ+Q

)

a− ≡ 1√2

(d

dQ+Q

)

Hn(Q) = 2QHn−1(Q)− 2(n− 1)Hn−2(Q)

ψn(Q) = AnHn(Q)e−Q2/2

A2n =

A2n−1

2n

ψn(Q) =

√2n

[Qψn−1(Q)−

√n− 1

2ψn−2(Q)

]

1

Page 2: Quantum Mechanics Formulas - Massachusetts - MITweb.mit.edu/birge/Public/formulas/quantum.pdf · Quantum Mechanics Formulas Constants ¯h ≡ h 2π De Broglie–Einstein Relations

Hydrogen Atom

V (r) = − e2

4πε0r

En = −R∞n2

Quasi Classical Approximation

ψ = e−i/hR

p(x) dx

TQC = e−2/hR b

a|p(x)| dx = e−2/h

Wave Packets

Ψ(x, t) =1√2π

∫ +∞

−∞a(k) exp[i(kx− ωt)] dk

Ψ(x, t) =1√2π

∫ +∞

−∞A(k, t)eikx dk

A(k, t) =1√2π

∫ +∞

−∞Ψ(x, t)e−ikx dx

Φ(p, t) =1√hA(k, t); p = hk

Expansion Principle and Hilbert Space

|Ψ〉 =∞∑

n=1

an|n〉

an = 〈n|Ψ〉, H|n〉 = En|n〉

〈Ψ|Ψ〉 =∞∑

n=1

|an|2 = 1

〈A〉 =∑

n

|an|2An

|Ψ〉 =

a1

a2

...

∑n

|n〉〈n| =∑

n

Pnn = 1

Stationary Perturbation Theory

Degenerate

H = H(0) + W

H(0)|n〉 = E(0)n |n〉

|ψ〉 ≈N∑

n=1

an|n〉

H11 H12 . . . H1N

H21 H22 . . . H2N

......

. . ....

HN1 HN2 . . . HNN

a1

a2

...aN

= E

a1

a2

...aN

Hmn = 〈m|H|n〉∣∣∣∣∣∣∣∣∣

H11 − E H12 . . . H1N

H21 H22 − E . . . H2N

......

. . ....

HN1 HN2 . . . HNN − E

∣∣∣∣∣∣∣∣∣= 0

Nondegenerate

|ψ〉 = |u〉+ |φ〉〈φ|u〉 = 0, 〈ψ|u〉 = 1

E ′n = En + 〈n|W |n〉E = E ′u + 〈u|W |φ〉

|ψ〉 = |u〉+∑

m 6=u

n6=m

|m〉 〈m|W |n〉E − E ′m

〈n|ψ〉

E ≈ E ′u + ∆E(2)

∆E(2) =∑

m 6=u

|〈m|W |u〉|2Eu − Em

2