Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10...

29
Protein Strucure Comparison Chapter 6,7 Orengo

Transcript of Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10...

Page 1: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Protein Strucure Comparison

Chapter 6,7 Orengo

Page 2: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Helices

• α-helix 4-turn helix, min. 4 residues310-helix 3-turn helix, min. 3 residuesπ-helix 5-turn helix, min. 5 residues

• Formed by H-Bonds between residues in the same helix

Page 3: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Strands and Sheets

• Formed by successive H-Bonds between residues can be far apart in sequence.

Page 4: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Cartoons for Secondary Structure Elements (SSE)

• Topology of Protein Structure (TOPS)– Triangular symbols represent beta strands– Circular symbols represent helices (alpha and 310)

Page 5: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Multiple structural alignment by CORA allows identification of consensus secondary structure and embellishments

Some families show great structural diversitySome families show great structural diversity

In 117 superfamilies relatives expanded by >2 fold or more

2DSEC algorithm2DSEC algorithm

These families represent more than half the genome sequences of known These families represent more than half the genome sequences of known foldfold

Gabrielle Reeves

Page 6: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Strategy

Page 7: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Two Approaches

Page 8: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Example

Page 9: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Intra

Page 10: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,
Page 11: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

RMSD

Page 12: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Example

• Alignment– ACSL-DRTS-IRV– A-TLREKSSLIR-

• Know first 5 residues– ACSL-D– A-TLRE

Page 13: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

But not so with structures

Dyn

amic

Pro

gra

mm

ing

can

no

t b

e u

sed

dir

ectl

y fo

r st

ruct

ure

alig

nm

ent

highest score alignment of entire structures

highest score alignment of first five residues

Page 14: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Finding optimal Root mean square deviation

Page 15: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Process

Let (α 1,β1),...,(α r,β r ) Be coordinate sets of equivalenced elements

minimize the expression (Rα i + t −β i)i=1

r

where R is a rotation and t is a translation

Degrees of freedom include1) Equivalenced elements2) Rotation3) Translation (usually centroid)

Page 16: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Example

• In two dimensions

Page 17: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Translation

• In two dimensions

Shift Centroids to the origin

Page 18: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,
Page 19: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,
Page 20: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,
Page 21: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Example HW 9.2

• In two dimensions• Rotation Matrix

-0.70721358 0.707213580.70721358 0.70721358

Page 22: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

The matrix in the book is just an angular rotation

Page 23: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

The first step

• Transpose centroids to the origin

• Foreach angular displacement in x– Foreach angular displacement in y

• Foreach angular displacement in x– Calculate RMSD– If this RMSD is less than current minimum, save it

Page 24: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

But, how did we get the equivalenced elements?

• First seed the problem with an initial equivalence E0

• Then find the Transformation that results in a minimum RMSD

• Use this Transformation to find a better equivalence

Page 25: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Alternating Superposition and Alignment

Page 26: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Example

The best rotation and translation is then found and a newalignment is generated

Page 27: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Structural Classification of Proteins (SCOP)

SCOP describes protein structures using a hierarchical classification scheme:

ClassesFoldsSuperfamilies (likely evolutionary relationship)FamiliesDomainsIndividual PDB entries

http://scop.mrc-lmb.cam.ac.uk/scop/

Page 28: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,

Class, Architecture, Topology, andHomologous Superfamily (CATH) database

Page 293

CATH clusters proteins at four levels:

C Class (, , & folds)A Architecture (shape of domain, e.g. jelly roll)T Topology (fold families; not necessarily homologous)H Homologous superfamily

http://www.biochem.ucl.ac.uk/basm/cath_new

Page 29: Protein Strucure Comparison Chapter 6,7 Orengo. Helices α-helix4-turn helix, min. 4 residues 3 10 -helix3-turn helix, min. 3 residues π-helix5-turn helix,