Powerpoint Templates

30
Powerpoint Templates Page 1 Powerpoint Templates Electromagnetic Radiation

description

Electromagnetic Radiation. Powerpoint Templates. Hertz (1857-1894). 1887 (22 years after Maxwell equations) discovered radio waves. Maxwell Equations. Constitutive Equations. Vacuum D = ε o E B = μ o H Conductors J = σ E. Linear media D = ε E B = μ H. Non linear media. - PowerPoint PPT Presentation

Transcript of Powerpoint Templates

Page 1: Powerpoint Templates

Powerpoint Templates Page 1Powerpoint Templates

Electromagnetic

Radiation

Page 2: Powerpoint Templates

Powerpoint Templates Page 2

1887 (22 years after Maxwell equations) discovered radio waves

Hertz(1857-1894)

Page 3: Powerpoint Templates

Powerpoint Templates Page 3

Maxwell Equations∇.𝐷= 𝜌

∇.𝐵= 0

∇𝑥𝐻= 𝐽+ 𝜕𝐷𝜕𝑡

∇𝑥𝐸= − 𝜕𝐵𝜕𝑡

𝐹= 𝑞(𝐸+ 𝑣Ԧ 𝑥 𝐵)

Page 4: Powerpoint Templates

Powerpoint Templates Page 4

Constitutive Equations

VacuumD = εo EB = μo H

ConductorsJ = σ E

Linear mediaD = ε EB = μ H

Page 5: Powerpoint Templates

Powerpoint Templates Page 5

Non linear media

P = χ(1)E + χ(2)E2 + χ(3)E3 + …

D = εo(E + χ(1)E + χ(2)E2 + χ(3)E3 + …)

D = εo(E + P)

∇𝑥𝐻= 𝐽+ 𝜀𝑜 𝜕𝐸𝜕𝑡 + 𝜀𝑜 𝜕𝑃𝜕𝑡

∇𝑥𝐻= 𝐽+ 𝜕𝐷𝜕𝑡

Page 6: Powerpoint Templates

Powerpoint Templates Page 6

Example SHG

E = 𝐸𝑜𝑒𝑖𝜔𝑡

𝑃= 𝐸2 = 𝐸𝑜2𝑒𝑖2𝜔𝑡

∇𝑥𝐻= 𝐽+ 𝜀𝑜 𝜕𝐸𝜕𝑡 + 𝜀𝑜 𝜕𝑃𝜕𝑡

∇𝑥𝐸= −𝜇 𝜕𝐻𝜕𝑡

Page 7: Powerpoint Templates

Powerpoint Templates Page 7

Gauss Theorem

∇.𝐷= 𝜌

න ∇.𝐷V 𝑑𝑉= 𝐷.𝑛ሬԦ 𝑑𝑆𝜕𝑉 = 𝑞

Isotropic media => Spherical field

4πr2𝐷= 𝑞 => 𝐸= 14𝜋𝜀𝑜𝑞𝑟2

Page 8: Powerpoint Templates

Powerpoint Templates Page 8

න ∇.𝐵V 𝑑𝑉= 𝐵.𝑛ሬԦ 𝑑𝑆𝜕𝑉 = 0

∇.𝐵= 0

Nº of field lines entering a volume must be equal

to the nº of lines living the volume (no magnetic

charge accumulation allowed). => Field lines are

closed loops.

Page 9: Powerpoint Templates

Powerpoint Templates Page 9

Stokes Theorem

න ∇𝑥𝐻S .𝑑𝑆= ර 𝐻.𝑑𝑙𝜕𝑆

න ( 𝐽+ 𝜕𝐷𝜕𝑡S ).𝑑𝑆= ර 𝐻.𝑑𝑙𝜕𝑆

I = 2𝜋𝑟𝐻 => 𝐵= 12𝜋𝜇𝐼𝑟

DC current

Page 10: Powerpoint Templates

Powerpoint Templates Page 10

Free Space∇.𝐸= 0

∇.𝐵= 0

∇𝑥𝐵= 𝜇𝑜𝜀𝑜 𝜕𝐸𝜕𝑡 = 1𝑐2 𝜕𝐸𝜕𝑡

∇𝑥𝐸= − 𝜕𝐵𝜕𝑡

∇𝑥∇𝑥𝐸= − ∇𝑥𝜕𝐵𝜕𝑡 = − 𝜕𝜕𝑡(∇𝑥𝐵)

∇𝑥∇𝑥𝐸= ∇(∇.E) − ∇2𝐸

Page 11: Powerpoint Templates

Powerpoint Templates Page 11

∇2𝐸= 1𝑐2 𝜕2𝐸𝜕𝑡2

∇2𝐵= 1𝑐2 𝜕2𝐵𝜕𝑡2

Possible solution: Plane waves

E= Eocos (kሬԦ.r ሬሬԦ– ωt + ∅)

B= Bocos (kሬԦ.r ሬሬԦ– ωt + ∅)

Page 12: Powerpoint Templates

Powerpoint Templates Page 12

∇.𝐸= 0 ∇.𝐵= 0

E= Eocos (kሬԦ.r ሬሬԦ– ωt + ∅)

∇.𝐸= ൫∇.𝐸𝑜 + 𝐸o.𝑘ሬԦ൯cos൫kሬԦ.r ሬሬԦ– ωt+ ∅൯

B= Bocos (kሬԦ.r ሬሬԦ– ωt + ∅)

𝑘ሬԦ.𝐸o = 0 𝑘ሬԦ.𝐵o = 0 𝑘ሬԦ𝑥𝐸o = 𝜔𝐵𝑜

𝑘ሬԦ𝑥𝐵o = − 𝜔𝑐2 𝐸𝑜

ȁ<𝐸ȁ<ȁ<𝐵ȁ<= 𝑐

Page 13: Powerpoint Templates

Powerpoint Templates Page 13

Potentials𝐵= ∇𝑥𝐴

𝐸= −∇𝑉− 𝜕𝐴𝜕𝑡

∇.𝐴+ 1𝑐2 𝜕𝑉𝜕𝑡 = 0

Page 14: Powerpoint Templates

Powerpoint Templates Page 14

Polarization

Page 15: Powerpoint Templates

Powerpoint Templates Page 15

Page 16: Powerpoint Templates

Powerpoint Templates Page 16

Page 17: Powerpoint Templates

Powerpoint Templates Page 17

Page 18: Powerpoint Templates

Powerpoint Templates Page 18

Page 19: Powerpoint Templates

Powerpoint Templates Page 19

Page 20: Powerpoint Templates

Powerpoint Templates Page 20

Page 21: Powerpoint Templates

Powerpoint Templates Page 21

Page 22: Powerpoint Templates

Powerpoint Templates Page 22

Page 23: Powerpoint Templates

Powerpoint Templates Page 23

Page 24: Powerpoint Templates

Powerpoint Templates Page 24

Page 25: Powerpoint Templates

Powerpoint Templates Page 25

Page 26: Powerpoint Templates

Powerpoint Templates Page 26

Page 27: Powerpoint Templates

Powerpoint Templates Page 27

Refraction & Reflection

Page 28: Powerpoint Templates

Powerpoint Templates Page 28

Law of reflection: θi = θr

Snell’s law: n1 sin θi = n2 sin θt

R

2

2( )( )

i t

i t

tgRtg

2

2( )( )

i t

i t

sinRsin

2 2(2 ) (2 )

( ) ( )i t

i t i t

sin sinTsin cos

2(2 ) (2 )

( )i t

i r

sin sinTsin

Page 29: Powerpoint Templates

Powerpoint Templates Page 29

Brewster's angle: 56.4º

Total reflection: 42º

Page 30: Powerpoint Templates

Powerpoint Templates Page 30