Physics 711: Assignment 1 SolutionsPhysics 711: Assignment 1 Solutions...

5
Physics 711: Assignment 1 Solutions In class we considered a planar quantum rotor model with a symmetry-breaking term that favours angular orientation near φ = 0: ˆ H = ˆ L 2 2I - I Ω 2 cos ˆ φ. Here, I is the moment of inertia, and Ω is the natural frequency of the corresponding classical problem in the small-amplitude-oscillation limit. The operators ˆ φ and ˆ L obey the canonical commutation relationship [ ˆ φ, ˆ L] = i ~. We made the decision to work in the φ-representation, so that the operators take the form φ and L = (~/i ) ∂/∂φ and act on a wave function ψ ( φ) . 1. (2 point) Show that states χ m ( φ) exp(imφ) are eigenstates of the angular momentum operator with eigenvalue ~m. Determine the proper normalization of the states. Acting with ˆ L = (~/i )( ∂/∂φ) on χ m ( φ) gives the eigenvalue relation ˆ L χ m ( φ) = ~ i ∂φ exp(imφ) = ~ i (im) exp(imφ) = ~m χ m ( φ) . This says that χ m ( φ) is a state of definite angular momentum L = ~m. To get a properly normalized wave function χ m ( φ) = C exp(imφ) , we have to fix the normalization constant according to Z π -π d φχ m ( φ) * χ m ( φ) = | C | 2 Z π -π d φ e -imφ e imφ = 2π | C | 2 = 1. The phase of C is arbitrary, so we’re free to choose χ m ( φ) = (2π ) -1/2 exp(imφ) . 2. (2 point) Argue that the parity operation (reflection across the preferred axis, φ →-φ) is a symmetry of the Hamiltonian. Construct a basis of states of definite even ( P =+1) and odd ( P = -1) parity from linear combinations of the angular momentum states χ m ( φ) . Explain how this basis can be used to block diagonalize the Hamiltonian. The Hamiltonian is ˆ H = ˆ L 2 2I - I Ω 2 cos ˆ φ = - ~ 2 2I 2 ∂φ 2 - I Ω 2 cos φ. It’s invariant under reflection since it only involves terms that are even in the angular variable: ˆ H φ→-φ -----→- ~ 2 2I 2 (-φ) 2 - I Ω 2 cos (-φ) = - ~ 2 2I 2 ∂φ 2 - I Ω 2 cos φ = ˆ H . Let’s build states of definite parity. The parity operation on χ m ( φ) = (2π ) -1/2 exp(imφ) is equivalent to changing the sign of m: ˆ P χ m ( φ) = (2π ) -1/2 ˆ P exp(imφ) = (2π ) -1/2 exp[im(-φ) ] = (2π ) -1/2 exp[i (-m) φ] = χ -m ( φ) . Hence, the following are states of definite parity. χ (+) 0 = 1 2π χ (+) m1 = 1 2 ( χ m + χ -m ) χ (-) m1 = 1 2 ( χ m - χ -m )

Transcript of Physics 711: Assignment 1 SolutionsPhysics 711: Assignment 1 Solutions...

Page 1: Physics 711: Assignment 1 SolutionsPhysics 711: Assignment 1 Solutions Inclassweconsideredaplanarquantumrotormodelwithasymmetry-breakingtermthatfavoursangular orientationnear˚= 0:

Physics 711: Assignment 1 Solutions

In class we considered a planar quantum rotor model with a symmetry-breaking term that favours angularorientation near φ = 0:

H =L2

2I− IΩ2 cos φ.

Here, I is the moment of inertia, and Ω is the natural frequency of the corresponding classical problem inthe small-amplitude-oscillation limit. The operators φ and L obey the canonical commutation relationship[φ, L] = i~. We made the decision to work in the φ-representation, so that the operators take the form φ andL = (~/i)∂/∂φ and act on a wave function ψ(φ).

1. (2 point) Show that states χm(φ) ∼ exp(imφ) are eigenstates of the angular momentum operator witheigenvalue ~m. Determine the proper normalization of the states.Acting with L = (~/i)(∂/∂φ) on χm(φ) gives the eigenvalue relation

L χm(φ) =~

i∂

∂φexp(imφ) =

~

i(im) exp(imφ) = ~m χm(φ).

This says that χm(φ) is a state of definite angular momentum L = ~m.To get a properly normalized wave function χm(φ) = C exp(imφ), we have to fix the normalizationconstant according to∫ π

−πdφ χm(φ)∗ χm(φ) = |C |2

∫ π

−πdφ e−imφeimφ = 2π |C |2 = 1.

The phase of C is arbitrary, so we’re free to choose χm(φ) = (2π)−1/2 exp(imφ).

2. (2 point) Argue that the parity operation (reflection across the preferred axis, φ → −φ) is a symmetryof the Hamiltonian. Construct a basis of states of definite even (P = +1) and odd (P = −1) parity fromlinear combinations of the angular momentum states χm(φ). Explain how this basis can be used to blockdiagonalize the Hamiltonian.The Hamiltonian is

H =L2

2I− IΩ2 cos φ = −~

2

2I∂2

∂φ2 − IΩ2 cos φ.

It’s invariant under reflection since it only involves terms that are even in the angular variable:

Hφ→−φ−−−−−→ − ~

2

2I∂2

∂(−φ)2 − IΩ2 cos(−φ)

= − ~2

2I∂2

∂φ2 − IΩ2 cos φ = H .

Let’s build states of definite parity. The parity operation on χm(φ) = (2π)−1/2 exp(imφ) is equivalent tochanging the sign of m:

P χm(φ) = (2π)−1/2P exp(imφ) = (2π)−1/2 exp[im(−φ)] = (2π)−1/2 exp[i(−m)φ] = χ−m(φ).

Hence, the following are states of definite parity.

χ(+)0 =

1√2π

χ(+)m≥1 =

1√2(χm + χ−m

)χ(−)m≥1 =

1√2(χm − χ−m)

Page 2: Physics 711: Assignment 1 SolutionsPhysics 711: Assignment 1 Solutions Inclassweconsideredaplanarquantumrotormodelwithasymmetry-breakingtermthatfavoursangular orientationnear˚= 0:

We can check that the eigenvalues are P = 1 and P = −1, respectively.

P χ(+)0 = P

1√2π=

1√2π= (+1) χ(+)

0

P χ(+)m≥1 =

1√2(P χm + P χ−m

)=

1√2(χ−m + χm

)=

1√2(χm + χ−m

)= (+1) χ(+)

m≥1

P χ(−)m≥1 =

1√2(P χm − P χ−m

)=

1√2(χ−m − χm)

= − 1√2(χm − χ−m)

= (−1) χ(−)m≥1

States carrying different parity quantum numbers are guaranteed to have zero overlap (i.e., they’re orthog-onal), since∫ π

−πdφ χ(+)

m (φ)∗ χ(−)m′ (φ) =

∫ π

−πdφ χ(+)

m (−φ)∗ χ(−)m′ (−φ) = −

∫ π

−πdφ χ(+)

m (φ)∗ χ(−)m′ (φ) = 0.

Then we can take advantage of the fact that H P = PH . The difference between these two matrix elementsmust vanish: ∫ π

−πdφ χ(P)

m (φ)∗H P χ(P′)m′ (φ) = P′

∫ π

−πdφ χ(P)

m (φ)∗H χ(P′)m′ (φ),∫ π

−πdφ χ(P)

m (φ)∗PH χ(P′)m′ (φ) = P

∫ π

−πdφ χ(P)

m (φ)∗H χ(P′)m′ (φ).

Hence,(P − P′)

∫ π

−πdφ χ(P)

m (φ)∗H χ(P′)m′ (φ) = 0,

which says that the matrix elements are ncessarily zero if the parity quantum numbers P and P′ are notthe same. In other words, the Hamiltonian has the block diagonal form∫ π

−πdφ χ(P)

m (φ)∗H χ(P′)m′ (φ) = H (P)

m,m′ δP,P′ .

3. (4 points) Consider a truncated basis that contains only the two lowest-lying states in each of the even-and odd-parity sectors. Write the time-independent Schrödinger equation as two 2 × 2 matrix eigenvectorproblems.Note that

χ(+)0 =

1√2π

χ(+)m≥1 =

1√2(χm + χ−m

)=

12√π

[exp(imφ) + exp(−imφ)

]=

1√π

cos mφ

−i χ(−)m≥1 =

−i√2(χm − χ−m)

=1

2i√π

[exp(imφ) − exp(−imφ)

]=

1√π

sin mφ

So the even and odd parity sectors are spanned byχ(+)m : m ≥ 0

=

1√2π,cos φ√π,cos 2φ√

π,cos 3φ√

π, . . .

χ(−)m : m ≥ 1

=

sin φ√π,sin 2φ√

π,sin 3φ√

π,sin 4φ√

π, . . .

Page 3: Physics 711: Assignment 1 SolutionsPhysics 711: Assignment 1 Solutions Inclassweconsideredaplanarquantumrotormodelwithasymmetry-breakingtermthatfavoursangular orientationnear˚= 0:

Computed with respect to the first two basis functions is each set, we get the following Hamiltonian blocks:

H (+) =*.,

H (+)1,1 H (+)

1,2

H (+)2,1 H (+)

2,2

+/-=

∫ π

−πdφ *.

,

χ(+)0 H χ(+)

0 χ(+)0 H χ(+)

1

χ(+)1 H χ(+)

0 χ(+)1 H χ(+)

1

+/-=

(a bb c

)

H (−) =*.,

H (−)1,1 H (−)

1,2

H (−)2,1 H (−)

2,2

+/-=

∫ π

−πdφ *.

,

χ(−)1 H χ(−)

1 χ(−)1 H χ(−)

2

χ(−)2 H χ(−)

1 χ(−)2 H χ(−)

2

+/-=

(d ee f

)We must evaluate the integral expressions for even-parity

a =∫ π

−πdφ

1√2π

(−~

2

2I∂2

∂φ2 − IΩ2 cos φ) 1√

2π=

12π

∫ π

−πdφ

(0 − IΩ2 cos φ

)= 0

b =∫ π

−πdφ

cos φ√π

(−~

2

2I∂2

∂φ2 − IΩ2 cos φ) 1√

2π= − IΩ2√

∫ π

−πdφ cos2 φ = − IΩ2

√2

c =∫ π

−πdφ

cos φ√π

(−~

2

2I∂2

∂φ2 − IΩ2 cos φ) cos φ√

π=

∫ π

−πdφ

(~2

2Icos2 φ − IΩ2 cos3 φ

)=~2

2I

and odd-parity coefficients

d =∫ π

−πdφ

sin φ√π

(−~

2

2I∂2

∂φ2 − IΩ2 cos φ) sin φ√

π=

∫ π

−πdφ

(~2

2Isin2 φ − IΩ2 cos φ sin2 φ

)=~2

2I

e =∫ π

−πdφ

sin φ√π

(−~

2

2I∂2

∂φ2 − IΩ2 cos φ) sin 2φ√

π=

∫ π

−πdφ

(2~2

Isin φ sin 2φ − IΩ2 cos φ sin φ sin 2φ

)= − IΩ2

2

f =∫ π

−πdφ

sin 2φ√π

(−~

2

2I∂2

∂φ2 − IΩ2 cos φ) sin 2φ√

π=

∫ π

−πdφ

(2~2

Isin2 2φ − IΩ2 cos φ sin2 2φ

)=

2~2

I

Expressed in terms of an energy scale ε0 = ~2/2I and dimensionless coupling g = (IΩ/~)2, the matrix

blocks are

H (+) =*.,

0 IΩ2√2

IΩ2√2

~2

2I

+/-= ε0

(0 −√2g−√2g 1

)

H (−) = *,

~2

2IIΩ2

2IΩ2

22~2I

+-= ε0

(1 −g−g 4

)

4. (4 points) Solve the even-parity 2 × 2 eigenproblem. For the ground state, plot the probability density|ψ(φ) |2 of finding the rotor in the vicinity of angle φ. Do this for small, intermediate, and large values ofΩ.Here are the solutions to the eigenproblem in the even and odd sector:

E (+)0 =

12

(1 −

√1 + 8g2

)ψ (+)

0 ∼ (1 +

√1 + 8g2, 2

√2g

)E (+)

1 =12

(1 +

√1 + 8g2

)ψ (+)

1 ∼ (1 −

√1 + 8g2, 2

√2g

)E (−)

0 =12

(5 −

√9 + 4g2

)ψ (−)

0 ∼ (3 +

√9 + 4g2, 2g

)E (−)

1 =12

(5 +

√9 + 4g2

)ψ (−)

1 ∼ (3 −

√9 + 4g2, 2g

)

Page 4: Physics 711: Assignment 1 SolutionsPhysics 711: Assignment 1 Solutions Inclassweconsideredaplanarquantumrotormodelwithasymmetry-breakingtermthatfavoursangular orientationnear˚= 0:

Over the full range of couplings, the lowest energy is E (+)0 , which means that the even-parity state with

coefficients ψ (+)0 ∼ (

1 +√

1 + 8g2, 2√

2g)is the ground state.

−9

−6

−3

0

3

6

9

Ener

gyei

genv

alue

,E

(g)/ϵ 0

0 1 2 3 4 5 6 7 8Relative coupling, g = (IΩ/!)2

E (+)0

E (−)0

E (−)1

E (+)1

The corresponding (non-normalized) wave function is

ψ (+)0 (φ) =

(1 +

√1 + 8g2) χ(+)

0 (φ) + 2√

2g χ(+)1 (φ).

Since χ(+)0 and χ(+)

1 are orthogonormal, the normalization factor is

N =∫ π

−πdφ |ψ (+)

0 (φ) |2 =(1 +

√1 + 8g2

)2+

(2√

2g)2

=

(1 + 2

√1 + 8g2 + 1 + 8g2

)+ 8g2

= 2(1 + 8g2) + 2

√1 + 8g2

Prob(φ) =1N

ψ(+)0

2=

(1 +

√1 + 8g2) χ(+)

0 (φ) + 2√

2g χ(+)1 (φ)

2

2(1 + 8g2) + 2

√1 + 8g2

=

(1 +

√1 + 8g2) 1√

2π+ 2√

2g cosφ√π

2

2(1 + 8g2) + 2

√1 + 8g2

=

[1 +

√1 + 8g2 + 4g cos φ

]2

4π[1 + 8g2 +

√1 + 8g2

]

Page 5: Physics 711: Assignment 1 SolutionsPhysics 711: Assignment 1 Solutions Inclassweconsideredaplanarquantumrotormodelwithasymmetry-breakingtermthatfavoursangular orientationnear˚= 0:

0

0.1

0.2

0.3

0.4

Prob

(φ)

−1 −0.5 0 0.5 1φ/π

g = 0g = 1/5g = 1g = 5

Prob(φ)g→0−−−−→ 1

2π(1 + 4g cos φ + 2g2 cos 2φ

)+O(g3)

g→∞−−−−→ 14π

(2 + 2

√2 cos φ + cos 2φ

)+O(g−1)

5. (3 points) Compute the expectation values of H with respect to the next-lowest-lying states in each sector.Based on energy comparisons, comment on the appropriateness of the basis truncation.∫ π

−πdφ

cos 2φ√π

Hcos 2φ√

π=

∫ π

−πdφ cos 2φ

(−~

2

2I∂2

∂φ2 − IΩ2 cos φ)

cos 2φ

=1π

∫ π

−πdφ cos 2φ

(4~2

2I− IΩ2 cos φ

)cos 2φ

=1π

∫ π

−πdφ

(2~2

Icos2 2φ − IΩ2 cos φ cos2 2φ

)=

2~2

I= 4ε0

∫ π

−πdφ

sin 3φ√π

Hsin 3φ√

π=

∫ π

−πdφ sin 3φ

(−~

2

2I∂2

∂φ2 − IΩ2 cos φ)

sin 3φ

=1π

∫ π

−πdφ sin 3φ

(9~2

2I− IΩ2 cos φ

)sin 3φ

=1π

∫ π

−πdφ

(2~2

Isin2 3φ − IΩ2 cos φ sin2 3φ

)=

9~2

2I= 9ε0

More generally, the level-m expectation value is m2ε0. So if the basis is cut off such that level M is thehighest state included, then the gap to the neglected state is 2M + 1 times greater than the level spacingbetween the lowest two levels:

ε0(M + 1)2 − ε0M2

ε0 − 0= 2M + 1.

If the neglected states are sufficiently gapped out, they can’t effectively hybridize with the low-energystates. To get well converged results, we’d probably want M to be on the order of at least 10 or 100.