Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave...

28
Physics 141 Lecture 27 Today’s Concept: A) Mirrors Electricity & Magne9sm Lecture 27, Slide 1

Transcript of Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave...

Page 1: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

Physics 141Lecture 27

Today’s  Concept:

  A)    Mirrors

Electricity  &  Magne9sm    Lecture  27,  Slide  1

Page 2: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

Reflection

Angle  of  incidence  =  Angle  of  reflec9on

θi  =  θr

θi

θr

That’s  all  of  the  physics  –  everything  else  is  just  geometry!

Electricity  &  Magne9sm    Lecture  27,  Slide  4

Page 3: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

Flat Mirror

All  you  see  is  what  reaches  your  eyesYou  think  object’s  loca9on  is  where  rays  appear  to  come  from.

θrθi

Flat Mirror

Object

All  rays  origina9ng  from  peak  will  appear  to  come  from  same  point  behind  mirror! Image

Electricity  &  Magne9sm    Lecture  27,  Slide  5

Page 4: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

Flat Mirror

3)  Lines  appear  to  intersect  a  distance  d  behind  mirror.  This  is  the  image  loca9on.

Virtual  Image:  No  light  actually  gets  here

d d

1)  Draw  first  ray  perpendicular  to  mirror  0 = θi = θr

2)  Draw  second  ray  at  angle.  θi = θr

θrθi

Electricity  &  Magne9sm    Lecture  27,  Slide  6

Page 5: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

Clicker Question

A  woman  is  looking  at  her  reflec9on  in  a  flat  ver9cal  mirror.  The  lowest  part  of  her  body  she  can  see  is  her  knee.  

If  she  stands  closer  to  the  mirror,  what  will  be  the  lowest  part  of  her  reflec9on  she  can  see  in  the  mirror.  

A)      Above  her  knee

B)      Her  knee

C)      Below  her  knee

Electricity  &  Magne9sm    Lecture  27,  Slide  7

Page 6: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

Clicker Question

A  woman  is  looking  at  her  reflec9on  in  a  flat  ver9cal  mirror.  The  lowest  part  of  her  body  she  can  see  is  her  knee.  If  she  stands  closer  to  the  mirror,  what  will  be  the  lowest  part  of  her  reflec9on  she  can  see  in  the  mirror.

A)      Above  her  knee

B)      Her  knee

C)      Below  her  knee

If  the  light  doesn’t  get  to  your  eye  then  you  can’t  see  it

Electricity  &  Magne9sm    Lecture  27,  Slide  8

Page 7: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

You will also get Images from Curved Mirrors:

Electricity  &  Magne9sm    Lecture  27,  Slide  9

Page 8: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

Concave:  Consider  the  case  where  the  shape  of  the  mirror  is  such  that  light  rays  parallel  to  the  axis  of  the  mirror  are  all  “focused”  to  a  common  spot  a  distance  f  in  front  of  the  mirror:

These  mirrors  are  o_ensec9ons  of  spheres  

(assumed  in  this  class).

For  such  “spherical”  mirrors,  we  assume  all  angles  are  

small  even  though  we  draw  them  big  to  make  it  easy  to  

see…

Note:  analogous  to  “converging  lens”Real  object  can  produce  real  image

fElectricity  &  Magne9sm    Lecture  27,  Slide  10

Page 9: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

2f f

For  a  spherical  mirror,  R = 2f

R

center  of  spheresome9mes  labeled  “C”

Aside:

Electricity  &  Magne9sm    Lecture  27,  Slide  11

Page 10: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

object

1)  Draw  ray  parallel  to  axis reflec9on  goes  through  focus

2)  Draw  ray  through  focus reflec9on  is  parallel  to  axis

image

You  now  know  the  posi9on  of  the  same  point  on  the  image

2f f

normal

normal

Note:    any  other  ray  from  9p  of  arrow  will  be  reflected  according  to          θi = θr and  will  intersect  the  two  rays  shown  at  the  image  point.

Recipe for Finding Image:

Electricity  &  Magne9sm    Lecture  27,  Slide  12

Page 11: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

object

image

SSʹ′

f

S > 2fimage  is:

realinvertedsmaller

2f f

Electricity  &  Magne9sm    Lecture  27,  Slide  13

f > 0s > 0s’ > 0

Page 12: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

SS’ f

object

image

S = 2f

2f

f

image  is:real

invertedsame  size

Electricity  &  Magne9sm    Lecture  27,  Slide  14

Page 13: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

SS’f

object

image

2f > S > f

2f f

image  is:real

invertedbigger

Electricity  &  Magne9sm    Lecture  27,  Slide  15

Page 14: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

f

objectimage(virtual)

f > S > 0 rays  no  longer  meetin  front  of  the  mirror

but  they  do  meet  behind  the  mirror

S

f

Electricity  &  Magne9sm    Lecture  27,  Slide  16

Page 15: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

S’< 0f

objectimage(virtual)

f > S > 0

S

f

image  is:virtualuprightbigger

f > 0s > 0s’ > 0

Electricity  &  Magne9sm    Lecture  27,  Slide  17

Page 16: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

f

Convex:  Consider  the  case  where  the  shape  of  the  mirror  is  such  that  light  rays  parallel  to  the  axis  of  the  mirror  are  all  “focused”  to  a  common  spot  a  distance  f  behind  the  mirror:

Note:  analogous  to  “diverging  lens”Real  object  will  produce  virtual  image

Electricity  &  Magne9sm    Lecture  27,  Slide  18

Page 17: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

object image(virtual)

S > 0 Sʹ′< 0

f < 0

S > 0 image  is:virtualuprightsmaller

f > 0s > 0s’ > 0

Electricity  &  Magne9sm    Lecture  27,  Slide  19

Page 18: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

S > 2freal

invertedsmaller

2f > S > f real

invertedbigger

f > S > 0 virtualuprightbigger

S > 0 virtualuprightsmaller

f > 0

f < 0

Executive Summary – Mirrors & Lenses:

fConverging

Diverging ffConvex

(diverging)

fConcave(Converging)

Electricity  &  Magne9sm    Lecture  27,  Slide  20

Page 19: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

Lens  sign  conven9ons

S:      posi9ve  if  object  is  “upstream”  of  lens  S’ :    posi9ve  if  image  is  “downstream”  of  lensf:        posi9ve  if  converging  lens

Mirrors  sign  conven9ons

S:      posi9ve  if  object  is  “upstream”  of  mirror  S’:    posi9ve  if  image  is  “upstream”  of  mirrorf:        posi9ve  if  converging  mirror  (concave)

s’ is  posi9ve  for  a  real  imagef  is  posi9ve  when  it  can  produce  a  real  image  

You  just  have  to  keep  the  signs  straight:

It’s Always the Same:

Electricity  &  Magne9sm    Lecture  27,  Slide  21

Page 20: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

Happy Day!

Unit  29:  One  day  only

Suggested  ac9vi9es:

*Ac9vity  29-­‐5:  Ray  Tracing  to  Locate  the  Virtual  Image

*Ac9vity  29-­‐7:  Forming  an  Image  with  a  Concave  Mirror

No  grades  for  this  unit,  par9cipa9on  only.We’ll  move  on  to  Unit  30  on  Friday

(c) Part of the law of reflection states that the incident ray, the reflected ray and the normal to the reflecting surface lie in the same plane. Is this adequately tested by this experiment? Explain.

Experiment OP1: Ray Optics, Reflection and Concave Mirrors

OP1.5

90°

90°

d1

d2

Image ofFilament

Fig. 1.5: Finding the Virtual Image of the Filament.

Part IV - Using Ray Tracing to Locate the Virtual Image (C)

In this part you will use the method developed in part II to find the position of

the virtual image of a filament formed by a plane mirror. The basic idea isillustrated in Figure 1.5. The (C) means that you may use your own ideas and

be creative in doing this part. Take notes clearly describing the procedure in

your lab notebook. Analyze the data and discuss the results. [Do not write on the

ray table.]

Part V - The Focal Length of a Concave Mirror

The image formed by a plane mirror is always virtual. A concave mirror can

form either a real image or a virtual image. A real image occurs if the rays come

from a distant source. If the source is closer than one focal length from the

mirror, then a virtual image is formed. If the source is exactly at the mirror’s

focal point, the rays emerge parallel from the mirror. This is the principle used in

flashlights, headlights and spotlights to produce a parallel beam of light.

Ideally, concave mirrors have a paraboloidal shape. Spherical shapes are

cheaper to manufacture than paraboloids and most inexpensive concave mirrors

are spherical. For most applications the loss in quality is insignificant,

particularly where the mirror’s f-number (focal length/diameter) is large. In the

following exercise you will use the cylindrical ray optics mirror to visualize its

image-forming properties and find the mirror’s focal length by producing a

parallel beam of rays.

1. Mount the slit plate and ray table. Place the slit plate directly on the light

source and move the ray table so its edge touches it. Use the ray table

surface with a centimetre grid and turn it so that the grid is aligned with the

optical bench axis.

Figure 29.6: Finding a virtual image.

Page 29-10 Studio Physics Activity Guide SFU

© 2008 by S. Johnson. Adapted from PHYS 131 Optics lab #1

Physics 131 Laboratory Manual

OP1.6

move source

image moves

y mm y' mm

Fig. 1.6: Rays

when source is at

focal point of the

mirror

Concave Mirror

Fig. 1.7: Setup to observe the image from a concave mirror

2. Observe the real image formed by a concave mirror. Place the ray

optics mirror on the ray table, turn on the light and observe the rays

reflected from the concave surface. When the mirror is at the far end of the

table you should see the reflected rays converging at the position of the real

image.

3. Rotate mirror to show aberration. If you turn the mirror so that the

image position is off the optical axis of the bench, you will notice that not

all rays converge at the same place. This is because the mirror’s shape is

circular instead of parabolic. This effect is known as spherical aberration

when it occurs in spherical mirrors.

4. Measure the source-mirror and image-mirror distances and

magnification. Orient the ray mirror so that the image is exactly on the

optic axis. Record the object-to-mirror distance, the image-to-mirror

distance. Slide the light source box a few mm away from the alignment rail

keeping its edge parallel to the

rail. Record the direction and

distance that the image is

displaced for a given light

source displacement. This

shows the magnification and

inversion of the image.

5. Find where the mirror gives

parallel reflected rays. Slide

the mirror closer to the light

source until the reflected rays

diverge. The rays don’t actually cross now, but their projections on the

dark side of the mirror will cross at the position of the virtual image. Move

the mirror back until the emerging rays are parallel. Measure the distance

between the light source and the mirror. Remove the mirror from the table

and have your partner repeat this measurement to get two independent

values for the focal length

VI - Forming an Image with a Concave Mirror.

If you cut a strip along any diameter of a spherical mirror you get something

close to a cylindrical mirror. It's not surprising then that we can understand

spherical mirrors from the properties of cylindrical mirrors studied in the last

part.

1. Arrange components. Set up the equipment as shown in Fig 1.7 with the

concave side of the mirror facing the light source. The viewing screen

should cover only half of the hole in the component holder so that light

from the filament reaches the mirror.

2. Find focal point of a distant object. Estimate the focal length of the

.

Figure 29.7: Set-up to observe the image from a concave mirror

(b) Choose five distances between 50.0 cm and 5.0 cm. These are object-mirror distances o for which you will measure the image-mirror distances i and the image heights h’. Record o, i, h and h’ in the table below. Calculate f from o and i "in each instance and record these values in the table below. Show at least one calculation of f in the space below.

o i h h’ f(calc)

(c) How do your five values of f agree?

Unit 29 – Reflection Page 29-15Author: Sarah Johnson

© 2008 by S. Johnson.

Page 21: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

C  is  not  correct  as  it  does  not  go  through  the  focal  point.  

0

15

30

45

60

1

CheckPoint 2

Electricity  &  Magne9sm    Lecture  27,  Slide  22

Page 22: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

CheckPoints 4 & 5

0

20

40

60

80

1

0

20

40

60

80

1

Electricity  &  Magne9sm    Lecture  27,  Slide  23

Page 23: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

0

13

25

38

50

1

If  the  object  is  behind  the  focal  length  it  will  reflect  an  inverted  image.  

If  the  object  is  in  front  of  the  focal  length  it  will  produce  a  virtual  upright  image.  

CheckPoint 7

SS’

f

object

image

2f > S > f

2f f

image  is:real

invertedbigger

f

objectimage(virtual)

f > S > 0 rays  no  longer  meetin  front  of  the  mirror

but  they  do  meet  behind  the  mirror

S

f

Electricity  &  Magne9sm    Lecture  27,  Slide  24

Page 24: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

0

18

35

53

70

1

CheckPoint 9

object image(virtual)

S > 0 Sʹ′ < 0

f < 0

S > 0 image  is:virtualuprightsmaller

Electricity  &  Magne9sm    Lecture  27,  Slide  25

Page 25: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

An  arrow  is  located  in  front  of  a  convex  spherical  mirror  of  radius  R = 50cm.The  9p  of  the  arrow  is  located  at  (−20cm,−15cm).  

Where  is  the  9p  of  the  arrow’s  image?

 Conceptual  Analysis    Mirror  Equa9on:    1/s + 1/sʹ′ = 1/f  Magnifica9on:      M = −s’/s

 Strategic  Analysis  Use  mirror  equa9on  to  figure  out  the  x  coordinate  of  the  image  Use  the  magnifica9on  equa9on  to  figure  out  the  y  coordinate  of  the  9p  of  the  image

Calculation

R = 50y

x(–20,–15)

Electricity  &  Magne9sm    Lecture  27,  Slide  26

Page 26: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

 What  is  the  focal  length  of  the  mirror?

A)      f = 50cm B)      f = 25cm C)      f = −50cm D)      f = −25cm

Rule for sign: Positive on side of mirror where light goes after hitting mirror

f = − 25 cm

< 0

Calculation

R = 50y

x(-20,-15)

An  arrow  is  located  in  front  of  a  convex  spherical  mirror  of  radius  R = 50cm.The  9p  of  the  arrow  is  located  at  (−20cm,−15cm).  

For  a  spherical  mirror  | f | = R/2 = 25cm.    

f

Ry

Electricity  &  Magne9sm    Lecture  27,  Slide  27

Page 27: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

What  is  the  x  coordinate  of  the  image?

A)      11.1 cm B)      22.5 cm C)      −11.1 cm D)      −22.5cm

s = 20 cmf = −25 cm

= −11.1 cm

Since  sʹ′ < 0 the  image  is  virtual  (on  the  “other”  side  of  the  mirror)

CalculationAn  arrow  is  located  in  front  of  a  convex  spherical  mirror  of  radius  R = 50cm.The  9p  of  the  arrow  is  located  at  (−20cm,−15cm).  

f = −25 cm

R = 50y

x

(-20,-15)

Electricity  &  Magne9sm    Lecture  27,  Slide  28

Mirror  equa9on

Page 28: Physics 141 Lecture 27 Lecture 27 - Mirrors...Fig. 1.7: Setup to observe the image from a concave mirror 2. Observe the real image formed by a concave mirror. Place the ray optics

What  is  the  y  coordinate  of  the  9p  of  the  image?

A)      −11.1 cm B)     −10.7 cm C)      −9.1 cm D)      −8.3cm

x = 11.1cm

s = 20 cmsʹ′= −11.1 cm

M = 0.556

yimage = 0.55 yobject = 0.556⨉(−15 cm) = −8.34 cm

CalculationAn  arrow  is  located  in  front  of  a  convex  spherical  mirror  of  radius  R = 50cm.The  9p  of  the  arrow  is  located  at  (−20cm,−15cm).  

f = −25 cm

R = 50y

x

(-20,-15)

Electricity  &  Magne9sm    Lecture  27,  Slide  29

Magnifica9on  equa9on