Painting Squares with 2-1 dcranston/slides/painting-squares-talk.pdf · PDF file Painting...
date post
03-Apr-2020Category
Documents
view
4download
0
Embed Size (px)
Transcript of Painting Squares with 2-1 dcranston/slides/painting-squares-talk.pdf · PDF file Painting...
Painting Squares with ∆2-1 shades
Daniel W. Cranston Virginia Commonwealth University
Joint with Landon Rabern Slides available on my webpage
SIAM Discrete Math 19 June 2014
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2. If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G ) ≥ 3 and ω(G ) ≤ ∆(G ) then χ(G ) ≤ ∆(G ).
If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2. If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)
≤ ∆(G )2. If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2.
If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2.
Thm [C.–Kim ’08]: If ∆(G ) = 3 and ω(G 2) ≤ 8, then χ(G 2) ≤ 8.
If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2.
Thm [C.–Kim ’08]: If ∆(G ) = 3 and ω(G 2) ≤ 8, then χ`(G 2) ≤ 8.
If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2.
Thm [C.–Kim ’08]: If ∆(G ) = 3 and ω(G 2) ≤ 8, then χ`(G 2) ≤ 8. If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2.
Thm [C.–Kim ’08]: If ∆(G ) = 3 and ω(G 2) ≤ 8, then χ`(G 2) ≤ 8. If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2.
Thm [C.–Kim ’08]: If ∆(G ) = 3 and ω(G 2) ≤ 8, then χ`(G 2) ≤ 8. If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2.
Thm [C.–Kim ’08]: If ∆(G ) = 3 and ω(G 2) ≤ 8, then χ`(G 2) ≤ 8. If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2.
Thm [C.–Kim ’08]: If ∆(G ) = 3 and ω(G 2) ≤ 8, then χ`(G 2) ≤ 8. If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G 2) ≤ ∆(G )2 − 1.
Coloring Squares
Thm [Brooks 1941]: If ∆(G 2) ≥ 3 and ω(G 2) ≤ ∆(G 2), then χ(G 2) ≤ ∆(G 2)≤ ∆(G )2.
Thm [C.–Kim ’08]: If ∆(G ) = 3 and ω(G 2) ≤ 8, then χ`(G 2) ≤ 8. If G is connected and not Petersen, then ω(G 2) ≤ 8.
Conj [C.–Kim ’08]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χ`(G
2) ≤ ∆(G )2 − 1.
The Finale
So for k = 7 our desired Moore graph exists and is unique!
Thm [C.-Rabern ’14+]: If G is connected, not a Moore graph, and ∆(G ) ≥ 3, then χp(G 2) ≤ ∆(G )2 − 1.
Related Problems
Wegner’s (Very General) Conjecture [1977]: If Gk is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1
max G∈Gk
χ(Gd) = max G∈Gk
ω(Gd).
I Our result implies Wegner’s conj. for d = 2 and k ∈ {4, 5}.
Borodin–Kostochka Conjecture [1977]:
If ∆(G ) ≥ 9 and ω(G ) ≤ ∆(G )− 1, then χ(G ) ≤ ∆(G )− 1.
I Our result implies B–K conj. for G 2 when G has girth ≥ 9.
Related Problems
Wegner’s (Very General) Conjecture [1977]: If Gk is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1
max G∈Gk
χ(Gd) = max G∈Gk
ω(Gd).
I Our result implies Wegner’s conj. for d = 2 and k ∈ {4, 5}.
Borodin–Kostochka Conjecture [1977]:
If ∆(G ) ≥ 9 and ω(G ) ≤ ∆(G )− 1, then χ(G ) ≤ ∆(G )− 1.
I Our result implies B–K conj. for G 2 when G has girth ≥ 9.
Related Problems
Wegner’s (Very General) Conjecture [1977]: If Gk is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1
max G∈Gk
χ(Gd) = max G∈Gk
ω(Gd).
I Our result implies Wegner’s conj. for d = 2 and k ∈ {4, 5}.
Borodin–Kostochka Conjecture [1977]:
If ∆(G ) ≥ 9 and ω(G ) ≤ ∆(G )− 1, then χ(G ) ≤ ∆(G )− 1.
I Our result implies B–K conj. for G 2 when G has girth ≥ 9.
Related Problems
Wegner’s (Very General) Conjecture [1977]: If Gk is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1
max G∈Gk
χ(Gd) = max G∈Gk
ω(Gd).
I Our result implies Wegner’s conj. for d = 2 and k ∈ {4, 5}.
Borodin–Kostochka Conjecture [1977]:
If ∆(G ) ≥ 9 and ω(G ) ≤ ∆(G )− 1, then χ(G ) ≤ ∆(G )− 1.
I Our result implies B–K conj. for G 2 when G has girth ≥ 9.
Related Problems
Wegner’s (Very General) Conjecture [1977]: If Gk is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1
max G∈Gk
χ(Gd) = max G∈Gk
ω(Gd).
I Our result implies Wegner’s conj. for d = 2 and k ∈ {4, 5}.
Borodin–Ko