Outline Historical elements: outlineconfs.obspm.fr/Blois2007/PresentationsPDF/Rey.pdfMarc...

19
1 Marc Lachièze-Rey Blois 2007 The cosmological constant Marc Lachièze-Rey (APC, Paris) Λ Marc Lachièze-Rey Blois 2007 The cosmological constant is not a problem But a possible solution to explain various astrophysical data: -age of the universe - Galaxy formation - Cosmography observations : SN data and others Other possible solutions exist to these problems like modified gravity, dark energy,… Marc Lachièze-Rey Blois 2007 Outline History of Λ Elements of cosmology Observational evidence The genuine cosmological constant Other explanations Marc Lachièze-Rey Blois 2007 Historical elements: outline • Einstein 1916 : no cosmological constant • Einstein 1917: first relativistic model: Λ • 1930 (Slipher, Hubble, Lemaître) : cosmic expansion --> Einstein renounces to Λ • Lemaître « saves » the “big bang” with Λ Cosmic distance Recalibration : Λ useless ? --> 1970’s CDM paradigm: Λ = 0 • problems : age , galaxy formation --> Λ-cdm • SN’s observations Λ denial : dark energy ?

Transcript of Outline Historical elements: outlineconfs.obspm.fr/Blois2007/PresentationsPDF/Rey.pdfMarc...

  • 1

    Marc Lachièze-Rey – Blois 2007

    The cosmological constant

    Marc Lachièze-Rey (APC, Paris)

    ΛMarc Lachièze-Rey – Blois 2007

    The cosmological constant is not a problem

    But a possible solution to explain various astrophysical data:

    -age of the universe

    - Galaxy formation

    - Cosmography observations : SN data and others

    Other possible solutions exist to these problems

    like modified gravity, dark energy,…

    Marc Lachièze-Rey – Blois 2007

    Outline

    History of ΛΛΛΛElements of cosmology

    Observational evidence

    The genuine cosmological constant

    Other explanations

    Marc Lachièze-Rey – Blois 2007

    Historical elements: outline

    • Einstein 1916 : no cosmological constant

    • Einstein 1917: first relativistic model: ΛΛΛΛ

    • 1930 (Slipher, Hubble, Lemaître) : cosmic expansion

    --> Einstein renounces to ΛΛΛΛ

    • Lemaître « saves » the “big bang” with ΛΛΛΛ

    • Cosmic distance Recalibration : ΛΛΛΛ useless ?

    --> 1970’s CDM paradigm: ΛΛΛΛ = 0

    • problems : age , galaxy formation --> ΛΛΛΛ-cdm• SN’s observations

    • ΛΛΛΛ denial : dark energy ?

  • 2

    Marc Lachièze-Rey – Blois 2007

    Original GR (Einstein, 1916)

    Gravitation is described by the geometry of space-time

    metric g --> Riemann --> Ricci --> Einstein tensor G(g)

    The material content of the universe determines the geometry :

    Einstein Equation : G (g) = χ T

    T = energy-momentum tensor of material content

    = the source of gravitation

    Direction / Département / Service ou Laboratoire

    6Unité qui présente / Réf présentation

    Relativistic Cosmology (Einstein 1917)

    GR is an ideal tool for cosmology :

    --> find a space-time solution to describe the whole universe,

    As a function of the average material content

    (matter, radiation, etc.)

    Einstein wants a cosmic model:

    • without spatial infinite : closed spatial sections

    • without spatial limit

    • static (expansion unknown in 1917)

    No such solution to Einstein equation as written

    --> Einstein modifies its equation

    Direction / Département / Service ou Laboratoire

    7Unité qui présente / Réf présentation

    New Einstein equation (1917)

    G(g) = χ T G(g) = χ T + Λ g

    New term Λ = cosmological constant- (no other term possible from mathematical consistency)

    - absolute constant

    - non material

    - repulsive effect

    - [almost] no effet of Λ for « local » problems (Solar System, galaxies, bh, …):

    Only at cosmological scales.

    - allows the desired solution = Einstein cosmological model

    Static : attraction by matter balanced by repulsion by Λspace = a three-sphère : closed, no boundary !

    Direction / Département / Service ou Laboratoire

    8Unité qui présente / Réf présentation

    Cosmic expansion (1930)

    • Observations by Vesto Slipher, Edwin Hubble (Hubble law 1929)+ Theoretical work by Georges Lemaître (“Hubble law” 1927)

    --> cosmic expansion --> Einstein renounces to ΛΛΛΛ

  • 3

    Direction / Département / Service ou Laboratoire

    9Unité qui présente / Réf présentation

    Lemaitre (1931) : primordial atom (later : big bang)

    wrong calibrations --> Age of the Universe < Age of the Earth

    age problem

    (also arguments from

    galaxy formation)

    Lemaître « saves »

    the big bang with ΛQuickTime™ et un

    décompresseur TIFF (non compressé)sont requis pour visionner cette image.

    Marc Lachièze-Rey – Blois 2007

    • Controversy (E/L): Einstein equation with or without Λ ?(Einstein will get out of the cosmological debate)

    Marc Lachièze-Rey – Blois 2007

    Historical elements.2• 1960’s : Cosmic distance Recalibration

    --> age problem resolved without Λ : Λ useless ?

    --> paradigm ( 1970’s) : cdm big bang models

    Λ = ΩΛ= 0, Ωmatter = 1

    • but • age of the universe: only marginally consistent

    • galaxy formation --> Λ-cdm

    One needs Λ

    • 1990: Supernova observations (a classical cosmological test)

    --> the expansion accelerates, exactly as predicted by Λ

    Confirms the need of Λ : CDM --> CDM- Λ

    • concordance : other observations also confirm the need of Λ

    • More recently : « GR with Λ unsatisfactory »--> Search another explanation for cosmic data

    (must mimick Λ)

    Marc Lachièze-Rey – Blois 2007

    Parameterisation of cosmology

    Cosmic Dynamics

    Spatial curvature :

    Cosmological constant ΛΛΛΛ

    Content = source of gravitation

  • 4

    Marc Lachièze-Rey – Blois 2007

    Cosmic dynamics

    Expansion law: scale factor R(t)

    expansion

    rate

    deceleration parameter

    Third derivative --> parameter w

    Beyond w = w(z)…

    Present Value = Hubble constant= H0 ≈ 70 km /sec /Mpc

    < 0 acceleration

    > 0 deceleration

    -.55

    Marc Lachièze-Rey – Blois 2007

    Spatial

    curvature

    k = sign

    RC = spatial curvature radius

    Fundamental

    relation :

    Marc Lachièze-Rey – Blois 2007

    [true] cosmological Constant

    Λ Λ Λ Λ constant by definition (required by mathematical consistency)

    Cosmic units : (≈ 0.7)

    Constant fundamental scale

    RΛ=(Λ)-1/2 ∼ (3 Gpc)

    Marc Lachièze-Rey – Blois 2007

    Source of gravitation : any substance

    energy density, pressure, equ. of State p = f(ρ)

    Its cosmological influence depends on ρ +3p

    Cosmological units : density parameter

    In cosmology, ρ and p vary with z.It is always possible to define

    From the cosmological point of view,

    any substance is defined by Ω and weff

  • 5

    Marc Lachièze-Rey – Blois 2007

    Source of gravitation : any substance

    Non relativistic matter (dust) p ≈ 0 : w=0

    Radiation p = ρρρρ / 3 : w=1/3

    Accelerating (Exotic !) ρρρρ +3p ΩΩΩΩΛΛΛΛ ~ .7

    Even without SN’s observations

    Marc Lachièze-Rey – Blois 2007

    Observational evidences

    – age of the Universe

    –SNIa

    –HST

    –CMB

    –LSS

    –BAO du SDSS

    – X-ray clusters

    –Shear cosmique

    –Effet Sachs-Wolfe intégré

    Direction / Département / Service ou Laboratoire

    20Unité qui présente / Réf présentation

    Age of

    the universe

    tU = time duration since the univers was « very small ».

    Finite by definition in big bang models.

    Function of the cosmic parameters

  • 6

    Marc Lachièze-Rey – Blois 2007

    Larger than ages of earth, oldest stars… : > 12 Gyrs

    Marc Lachièze-Rey – Blois 2007

    Galaxy Formation

    Galaxies need a long time to form.

    If Λ =0, no sufficient time(already remarked by Lemaître).

    Marc Lachièze-Rey – Blois 2007

    Supernovas (SNIa) = luminosity distance measurements

    Perlmutter 2003,Physics Today

    Hyp : SNIa are standardizable candles

    Dlum =L

    4π f

    Riess et al. 1998, AJ 116,,

    1009 (High-Z SN Search)

    Perlmutter et al 1999, ApJ

    517, 565 (SCP)

    Marc Lachièze-Rey – Blois 2007

    Supernova cosmology project (Knop, Perlmuter)

  • 7

    Marc Lachièze-Rey – Blois 2007

    SN observations

    • SuperNova Legacy Survey (SNLS) [14]. P. Astier,et al , A&A, 447,

    31, (2006)

    • ”gold” data set of supernovae

    Riess et al. http://fr.arxiv.org/abs/astro-ph/0611572

    • The ESSENCE Supernova Survey:

    In its first four years, 102 type Ia SNe, at z from 0.10 to 0.78.

    Marc Lachièze-Rey – Blois 2007

    Essence

    QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

    Marc Lachièze-Rey – Blois 2007

    SN results

    Do we have good data,

    good interpretation of them ?

    • Are SNs good standard candles ?

    • May some substance interact with

    the photons and modify our

    perception of SN data?

    But concordance

    Marc Lachièze-Rey – Blois 2007

  • 8

    Marc Lachièze-Rey – Blois 2007

    CMB alone measurements are degenerate in ΩM & ΩΛ(requires h)

    --> Use CMB (WMAP-3 (Spergel et al. 06))

    + something else something else

    • Different combinations of HST, SN, LSS, BAO, Shear, LTSW are conDifferent combinations of HST, SN, LSS, BAO, Shear, LTSW are consistent : sistent :

    Overconstrained model : Overconstrained model :

    • CMB + HST : ΩΛ = 0.758 +- 0.06HST Key Project measurement of the Hubble constant

    (Freedman et al. 2001, ApJ 553, 47): h100 = 0.72 +-

    0.08

    • CMB + SNLS : ΩΛ = 0.719 +- 0.03

    ΩΛ ~ 1−ΩM ~ 0.7

    Marc Lachièze-Rey – Blois 2007

    Galaxy clusters

    Marc Lachièze-Rey – Blois 2007

    Galaxy clusters

    S.W. Allen et al. 2002 (arXiv:astro-ph/0205007v1)

    X-ray gas mass fraction for a sample of

    luminous X clusters (Chandra Observatory)

    as a function of z

    (independent mass confirmation from gravitational lensing studies.)

    (gravitational instability)

    ( X-ray gas mass fractions -- >> an approximately

    constant value at a radius r2500, (ρ =2500 ρcritical)

    Combining with measurements of Ωbaryon and H0 (Hubble Key Project)

    --> Ωm = 0.30+0.04, ΩΛ� = 0.95 Marc Lachièze-Rey – Blois 2007

    BAO =baryonic acoustic oscillations

    = Acoustic Peak

    Luminous Red Galaxy (LRG) sample

    from SDSS :

    46 748 galaxies with 0.16

  • 9

    Marc Lachièze-Rey – Blois 2007

    BA0’s

    QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

    ∼150 Mpc

    Cosmic

    ruler

    Marc Lachièze-Rey – Blois 2007

    BA0’s

    150 Mpc

    QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

    SDSS

    Aso 2DF

    Project : Ly alpha

    150 Mpc

    Marc Lachièze-Rey – Blois 2007

    BAOs

    QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

    QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

    Assuming spatially flat

    Conley et al. arXiv:astro-ph/0602411v2

    Marc Lachièze-Rey – Blois 2007

    Cosmic shear

    Waerbeke et al. 2005, A&A 429, 75

    VIRMOS

    Decarte survey

    VIRMOS survey

  • 10

    Marc Lachièze-Rey – Blois 2007

    Integrated Sachs Wolfe Effect

    Cabré et al., astro-ph/0603690Correlation CMB -- galaxy distribution

    Marc Lachièze-Rey – Blois 2007

    Integrated Sachs Wolfe Effect

    QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

    Correlation functions

    Marc Lachièze-Rey – Blois 2007

    Is the “good” Einstein equation with or without Λ ?

    • Simplicity (Λ = 0) or generallity (Λ ≠ 0)

    • ”Natural” Character of Λ :natural passage from Newton theory to GR

    deformation theory : deformation parameter

    --> Λ ≠ 0 : free parameter

    Without decisive argument : observations.

    Theoretical Arguments

    Marc Lachièze-Rey – Blois 2007

    Orders of magnitude

    ρΛ ~ 2 ρmatter

    This number is large : « cc problem »

    This number is not large : « coincidence problem »

    Cosmology

    10-122MP4 == 10-54MEW

    4

    Planck scale :

    Particle physics

  • 11

    Marc Lachièze-Rey – Blois 2007

    Alternatives to Lambda

    Marc Lachièze-Rey – Blois 2007

    Explanations for cosmological

    data• I - backreaction : physics is OK ; but new view on cosmology

    • II - “genuine” Λ : “natural” explanation

    Any other hypothesis (denial approach) requires new physics.

    • III - modified gravity :

    GR --> ? (strings, branes, non minimal coupling …?)

    • IV - dark (black, exotic…) energy Requires a lot of fine tunings

    Categorizing Different Approaches to the Cosmological Constant Problem S.Nobbenhuis arXiv:gr-qc/0411093

    Marc Lachièze-Rey – Blois 2007

    Back reaction(Kolb, Buchert…) : Averaging effect of inhomogeneities

    Einstein equation : G(g) = χ Tbut < G(g) > ≠ χ < T >

    « The cosmological effect of the neglected term in an inhomogeneous

    universe can account for SN’s observed properties »

    (and mimick cosmic acceleration in an homogeneous universe)

    Is that true ? Does it explain other cosmological data ?

    --> M N Célérier talk

    Marc Lachièze-Rey – Blois 2007

    Modified [classical] gravity

    • Describe gravity with more fields : Non minimal coupling :

    scalar-tensor, Brans - Dicke…

    • Modify Lagrangian (extended curvature gravity) : R --> f(R)

    • Conformal approaches (involve Weyl tensor)

    Low scale tests, equivalence principle

  • 12

    Marc Lachièze-Rey – Blois 2007

    Strings and branes inspired explanations (More dimensions)

    • String theories imply many new fields

    • Scenarios from Brane physics :

    gravity explores more dimensions

    - ex.: DGP (Dvali-Gabadadze-Porrati) brane world model :

    gravity is trapped on a four dimensional brane world at short distances,

    but propagates into a higher dimensional space at large distances.

    - ex.: Cyclic (ekpyroptic) universe (Steinhardt et al). :

    Dynamics in a multi-dimensional world

    All suggestions of modified gravity add degrees of freedom to GR,

    to fit the data

    Simplest modification : the true lambda explains everything

    with only one (constant) parameter ! !

    Marc Lachièze-Rey – Blois 2007

    Anthropic view (string « landscape »)

    Many « worlds » exist.

    Each possess a value of Λ

    If « many worlds » take some meaning

    If some ensemble approach is possible (?)

    If the proba distribution of Λ and the Proba distribution of life coincide : anthropic explanation

    e.g. : proba of an observed universe = number of observers in that universe (how to calculate that ?)

    Marc Lachièze-Rey – Blois 2007

    Dark EnergyThe « joker of physics (and cosmology) » ?

    = « substance » to mimic Λ (assumed to be zero)

    Violates (at least strong) energy condition

    Marc Lachièze-Rey – Blois 2007

  • 13

    Marc Lachièze-Rey – Blois 2007

    Dark energy :

    • Must have repulsive gravitational effect : ρ + 3 p < 0

    --> EXOTIC

    Must be unclustered (otherwise detected)

    No such thing in present physics! --> Invent it for the purpose. Two approaches

    • 1) Just assume a “fluid” with the desired EOS : p(z) = w(z) ρ(z)

    observations constrain [some integrals involving] w(z)

    --> myriads of solutions, completely fine tuned

    some authors parametrize w(z)

    Ex : quinessence, Chaplyin gas …

    • 2) Design a Lagrangian L

    arbitrary functions to represent kinetic term and potential

    Calculate EOS --> express with w(z) --> like the previous cases

    --> constrain the arbitrary functions

    Many solutions work ; the simplest = quintessence

    Marc Lachièze-Rey – Blois 2007

    From Uzan http://www2.iap.fr/pnc/JDEM/UzanJDEM-CNES150304.pdf

    Marc Lachièze-Rey – Blois 2007

    Dictionnary (first approach )

    • « Decaying lambda » : Λ = Λ[a(t)] (ex. Λ = a-m ) or Λ = Λ[H(t)]

    deduce ρ and w from momentum - energy conservation

    •Quiessence = dark energy with a time-independent equ of state : w: Ct

    • Kinessence = dark energy with a time-dependent equ of state

    Ex. generalized Chaplyin gas p = K ρ−α

    •Assume that the dynamics of the field adjusts in some way to that of matter/radiation

    Tracker fields,

    Holographic dark energy : ρΛ / ρmatter = r = Ct

    • Phantom DE = w < -1 (requires modif of GR, eg non minimal coupling)

    quintom = quintessence + phantom

    •Viscous pressure p = P-Π, Π =Π [ div u]

    (may arise from quantum effects, like particle creation)

    See review and comparison in Silva e Costa and Makler (arXiv:astro-ph/0702418v1)

    Connections among three roads to cosmic acceleration:

    decaying vacuum, bulk viscosity, and nonlinear fluids

    Marc Lachièze-Rey – Blois 2007

    Dictionnary (Lagrangian approach)

    •Quintessence = slowly evolving real Scalar field, with minimal coupling,

    • K-essence = kinetic-energy-driven quintessence:

    Non standard kinetic term in Lagrangian

    (kinetic K- essence : only kinetic term)

    • Phantom DE = w < -1 (requires modif of GR, eg non minimal coupling)

    • quintom = quintessence + phantom

    Klein

    Gordon

  • 14

    Marc Lachièze-Rey – Blois 2007

    All these approaches require

    fine adjustement

    of arbitrary parameters and functions

    to reproduce the data

    Marc Lachièze-Rey – Blois 2007

    KinessenceGeneric term for dark energy fluid with a time dependent equ of state,

    written w = w(z) = p(z)/ρ(z)

    acceleration ==> w < -1/3

    Constraints -->

    Marc Lachièze-Rey – Blois 2007

    [ Kinessence : exemples of parametrization ]

    SN Ia + SDSS + WMAP ==> w0 = -1.1, ΩM=0.25

    Idem ==> w0 = -0.97, ΩM=0.28

    Marc Lachièze-Rey – Blois 2007

    W = w0+wa (1-a)

    QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

    Kinessence : parametrization

    Constraints from SN’s

  • 15

    Marc Lachièze-Rey – Blois 2007

    Quiessence

    Dynamical age of the universe as a constraint on the parametrization of dark energy

    equation of state, V. B. Johri P. K. Rath (arXiv:astro-ph/0603786v4)

    time-independent equation of state : w = Ct

    Ex • Network of non-interacting cosmic strings (w = -1/3)

    • Domain walls (w = -2/3)

    • Some forms of quintessence

    • true

    Observational constraints ==>

    Marc Lachièze-Rey – Blois 2007

    Quintessence

    Imagine a real Scalar field with standard Lagrangian (minimal coupling)

    Which gives the desired behaviour

    w ≥ -1

    (A priori w = w(z) --> a particular case of kinessence)

    a common choice (Ratra-Peebles) V ∝ Φ-α

    Marc Lachièze-Rey – Blois 2007

    Dynamical evolution of Quintessence

    Klein Gordon equation with damping (friction term) by cosmic expansion):

    The field rolls down towards the minimum of V, at a rate driven by the shape of V

    - Initially the kinetic energy dominates : `kination’.- It decreases faster than the radiation and the scalar field freeze- By now the potential energy becomes dominant (it was adjusted for that).

    Any of these models requires generic fine tuning :

    • the level of the potential (and/or mass) must reproduce the present lambda

    • the shape must give the correct evolution (and be compatible with all cosmology)

    If not, [m the friction term dominates and the field does not oscillate.m >> mH ==> the field would start to oscillate much earlier in the historyof the universe and would have reached a minimum long ago and would not affect the present universe.]

    Marc Lachièze-Rey – Blois 2007

    Quintessence

    The potential gives the cosmic dynamics: w(z)

    Then, adjust to fit cosmic data (e.g. acceleration)

    But few constraints, limited precision, involve only integrals of w(z)

    QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

    --> Many solutions possible

    --> many quintessence models

    Observational constraints

    From ADVANCED TOPICS IN COSMOLOGY:

    A PEDAGOGICAL INTRODUCTION

    T. Padmanabhan

    arXiv:astro-ph/0602117

  • 16

    Marc Lachièze-Rey – Blois 2007

    Particular cases of quintessence : Scaling solutions

    The energy density of the scalar field evolves by mimicking some the

    background fluid (ordinary matter or radiation)

    --> energy density.: ρ�/ρmatter = Constante

    For a set of initial conditions, acts as a dynamical attractor

    Ex. Chaplyin gas : P = -A / ρ

    Ex. tracker field …

    Marc Lachièze-Rey – Blois 2007

    Tracker fields (peculiar cases of quintessence)

    Adjust potential so that the field density « adjusts » to that of matterapproaches an « attractor » solution

    �designed to solve

    the coincidence problem

    QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

    Marc Lachièze-Rey – Blois 2007

    kinetic-energy-driven quintessence = K - essence

    Non trivial kinetic term in Lagrangian :

    Pressure = Lagrangian density L = v(φ) F[K (φ)]

    (K (φ) = usual kinetic energy term)

    For some class of functions, admits solutions that track the equation of

    state of the dominant type of matter (radiation in the early universe) until

    pressure-less matter becomes dominant.

    Then the k-essence begins to evolve toward cosmological constant

    behavior (w= -1).

    (An exemple : tachyonic field)

    (Solutions giving w= Ct ≠ -1 are unstable)

    Kinetic k-essence and Quintessence, Roland de Putter & Eric V. Linder (arXiv:0705.0400v1)

    Marc Lachièze-Rey – Blois 2007

    General warning :

    data and models are often confronted with some a

    priori (e.g. flat space hypothesis)

    Dynamical Dark Energy or Simply Cosmic Curvature?

    Clarkson, Cortes and Bassett (arXiv:astro-ph/0702670v1)

  • 17

    Marc Lachièze-Rey – Blois 2007

    Problems of dark energy

    • energy of a quantum state not defined

    • very unnatural mass (or potential) scale

    • a lot of fine tuning is required

    • no predictive power : every kind of models can reproduce observations (Padmanaban)

    • almost no constraints

    • coincidence problem

    • dark energy assumes Λ=0 ; Why ?

    Marc Lachièze-Rey – Blois 2007

    Vacuum energy

    [gravitational] Energy is not a well defined concept in quantum

    physics : All calculation give ∞∞∞∞Only energy differences are defined (after regularization)

    Note : Casimir effet is due to an energy difference

    [Jaffe, …arXiv:hep-th/0503158] ________________________

    Some hope ?

    –Supersymmetry : bosons and fermion contributions compensate --> exactly 0

    but supersymmetry breaking ? (how ?, bad scale)

    – some cut-off for the energy integral (to be justified) -->

    � finite value, but unnatural scale required : “ cc problem “

    Marc Lachièze-Rey – Blois 2007

    « Cosmological constant problem »

    Why this number is so large ?

    Maybe because acceleration has nothing to do with particle

    physics ?

    (Same problem than for, e.g., the masses of particles)

    (despite the appellation, not a problem for the true

    Cosmological constant )

    Marc Lachièze-Rey – Blois 2007

    « Coincidence problem »

    Why ΩΛ of the same order than Ωmatter today ?

    Why ΩΛ / Ωmatter not large ?

    No explanation

    (tracker type models are constructed in ad hoc fashion

    to answer this problem)

  • 18

    Marc Lachièze-Rey – Blois 2007

    The coïncidence problem= « second cosmological constant problem ”.

    Why ΩΛ ≈ 2 ΩmatterOr why RΛ ≈ c H

    -1.

    Why now ?

    Marc Lachièze-Rey – Blois 2007

    Is there any need for dark energy ?

    Yes if some measurement gives w ≠ -1

    Marc Lachièze-Rey – Blois 2007

    QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

    Marc Lachièze-Rey – Blois 2007

    A true cosmological constant ?

    • Not a substance (a fluid) but a geometrical term

    GR theory

    • No unnatural value : given by observations

    • Natural geometrical term in GR Lagrangian --> curvature of the GR vacuum

    [ Einstein wish : vacuum of GR = nothing (no space-time)

    Not true in present GR ]

    No Λ :vacuum = Minkowski space-time with no curvature, no expansion

    With Λ : vacuum = de Sitter constant curvature (Λ) space-time, expanding

  • 19

    Marc Lachièze-Rey – Blois 2007

    Arguments for a true cosmological constant

    • Any change of theory introduces a new parameter : SR --> GR

    • Deformation theory : Newton --> SR --> GR : c, Λ

    • « cc problem » suggests that acceleraation has nothing to do

    with particle physics

    (in addition with vacuum energy problems, fine tuning required)

    Padnamaban : Gravity’s immunity from vacuum energy

    (--> new formulation of gr )

    Marc Lachièze-Rey – Blois 2007

    Two scales for the world ?

    RΛ = Λ-2

    = curvature radius of the fundamental state of GR :

    vacuum (de sitter) space-time

    --> Two fundamental length scales in the world:

    Lplanck ≈ 10-30 cm et RΛ ≈ 1028 cm

    (rem : Minkowski : RΛ =∞)

    Marc Lachièze-Rey – Blois 2007

    To conclude : Cosmology requires an accelerating factor

    The true Λ explains all cosmological data. No new physics needed.

    One unique arbitrary parameter solves the “problems”

    Value not unnatural

    Justify Λ ?