OCN400$Problem$Set$#3Key$$ Winter$2015$Due:$9:30a.m ...1/2#to#minutes#...

8
OCN 400 Problem Set #3 Key Winter 2015 Due: 9:30 a.m., Monday , February 2 1. Secular Equilibrium a) 232 Th 90 decays by alpha (α) decay. This thorium isotope has an atomic number (protons) of 90 and an atomic weight (protons + neutrons) of 232. The decay product is radium. What is the atomic number and atomic weight of this radium isotope? (5) + , with an atomic weight of 228. 1pt for Ra 1pt for 228 1 pt for 88 (implied 1 pt for alpha decay) b) 232 Th 90 has a halflife of 1.4 * 10 10 years. The radium isotope it decays to has a half life of 5.75 years. If there was none of this radium initially present, how long would the sample have to sit for secular equilibrium to be reached? (5) Five half lives of the daughter or 5 x 5.75 years = 28.75 years c) If the activity of 232 Th and this Ra isotope were equal (secular equilibrium), what would be the ratio of their molal concentrations? (5) For secular equilibrium, the activity of the daughter must equal activity of the parent = A= λ N λ = 0.693/t½ = = = . / ½ . / ½

Transcript of OCN400$Problem$Set$#3Key$$ Winter$2015$Due:$9:30a.m ...1/2#to#minutes#...

Page 1: OCN400$Problem$Set$#3Key$$ Winter$2015$Due:$9:30a.m ...1/2#to#minutes# Getting#concentration#to#atoms# Multiplying#by#elemental#abundance# Determining## # b)#In#June#2013#surface#waters#off#the#west#coast#of#North#America#had#measured#cesium

OCN  400  Problem  Set  #3  Key    Winter  2015  Due:  9:30  a.m.,  Monday  ,  February  2     1.  Secular  Equilibrium   a)  232Th90  decays  by  alpha  (α)  decay.  This  thorium  isotope  has  an  atomic  number  (protons)  of  90  and  an  atomic  weight  (protons  +  neutrons)  of  232.  The  decay  product  is  radium.  What  is  the  atomic  number  and  atomic  weight  of  this  radium  isotope?  (5)    

𝐓𝐡𝟗𝟎𝟐𝟑𝟐 → 𝛂𝟐𝟒 + 𝐑𝐚𝟖𝟖

𝟐𝟐𝟖 𝐑𝐚𝟖𝟖

𝟐𝟐𝟖 , with an atomic weight of 228. 1pt  for  Ra  1pt  for  228  1  pt  for  88  (implied  1  pt  for  alpha  decay)   b)  232Th90  has  a  half-­‐life  of  1.4*1010  years.  The  radium  isotope  it  decays  to  has  a  half  life  of  5.75  years.  If  there  was  none  of  this  radium  initially  present,  how  long  would  the  sample  have  to  sit  for  secular  equilibrium  to  be  reached?  (5)     Five  half  lives  of  the  daughter  or  5  x  5.75  years  =  28.75  years       c)  If  the  activity  of  232Th  and  this  Ra  isotope  were  equal  (secular  equilibrium),  what  would  be  the  ratio  of  their  molal  concentrations?  (5)      For  secular  equilibrium,  the  activity  of  the  daughter  must  equal  activity  of  the  parent    𝐀 𝐓𝐡𝟐𝟑𝟐 = 𝐀 𝐑𝐚𝟐𝟐𝟖    A=  -­‐λN  λ  =  0.693/t½      −𝛌 𝐓𝐡𝟐𝟑𝟐 𝐍 𝐓𝐡𝟐𝟑𝟐 = −𝛌 𝐑𝐚𝟐𝟐𝟖 𝐍 𝐑𝐚𝟐𝟐𝟖      𝐍 𝐓𝐡𝟐𝟑𝟐

𝐍 𝐑𝐚𝟐𝟐𝟖=𝛌 𝐑𝐚𝟐𝟐𝟖

𝛌 𝐓𝐡𝟐𝟑𝟐  

 

=𝟎.𝟔𝟗𝟑/𝐭½ 𝐑𝐚𝟐𝟐𝟖  

𝟎.𝟔𝟗𝟑/𝐭½   𝐓𝐡𝟐𝟑𝟐  

 

Page 2: OCN400$Problem$Set$#3Key$$ Winter$2015$Due:$9:30a.m ...1/2#to#minutes# Getting#concentration#to#atoms# Multiplying#by#elemental#abundance# Determining## # b)#In#June#2013#surface#waters#off#the#west#coast#of#North#America#had#measured#cesium

=𝐭½ 𝐓𝐡𝟐𝟑𝟐  

𝐭½   𝐑𝐚𝟐𝟐𝟖=𝟏.𝟒×𝟏𝟎𝟏𝟎𝐲𝟓.𝟕𝟓  𝐲  

   = 𝟎.𝟐𝟒×𝟏𝟎𝟏𝟎        

1  pt  Setting  activities  equal  1  pt  Plug  in  concentration  times  rate  of  decay  1  pt  Knowing  to  solve  for  ratio  1  pt  Using  half  life  equation  to  get  the  ratio     d)  Thorium  isotopes  are  attached  to  particles.  Radium  isotopes  are  more  soluble  (like  calcium  and  barium)  but  not  totally  conservative.  Suggest  a  possible  geochemical  application  for  this  Th-­‐Ra  isotope  pair.  (5)     232Th  is  insoluble.  It  comes  into  the  ocean  on  particles.  Any  solubilized  in  the  ocean  also  becomes  attached  to  particles.  Because  its  half-­‐life  is  so  long  it  is  mostly  removed  to  the  sediments.  There  it  decays  to  228Ra.  Because  228Ra  is  much  more  soluble  it  can  diffuse  back  to  the  overlying  water.  Thus  there  is  excess  228Ra  in  the  water  column  near  the  sediment  water  interface.  The  Ra  is  transported  away  by  mixing.  Thus  228Ra  can  be  used  to  calculate  the  eddy  diffusion  coefficient  due  to  mixing  away  from  the  bottom  boundary.  Because  it’s  half  live  is  somewhat  long  it  can  be  transported  some  distance  (~  1  km)  before  decaying.      Also  acceptable:  anything  that  includes  a  use  for  both  ions    Chemistry  of  elements  Half  lives  of  elements  How  these  can  be  combined  to  make  a  useful  tool    -­‐2  for  only  considering  1     2.  Radioactive  Decay  –  units  –  Fukushima  contamination     a)  Calculate  the  activity  (in  dpm/liter  and  Bq/liter)  of  40K  and  238U  in  seawater.  40K  provides  most  of  the  natural  background  radiation  in  the  ocean.  (10)     Useful  information:   Hint:  1  Becquerel  (Bq)  =  1  dps  =  0.016  dpm     The  concentrations  of  natural  potassium  and  uranium  in  seawater  are    [K]=400ppm;    

Page 3: OCN400$Problem$Set$#3Key$$ Winter$2015$Due:$9:30a.m ...1/2#to#minutes# Getting#concentration#to#atoms# Multiplying#by#elemental#abundance# Determining## # b)#In#June#2013#surface#waters#off#the#west#coast#of#North#America#had#measured#cesium

[U]=3ppb    [Hint:  you  will  first  need  to  calculate  the  atoms/liter  for  K  and  U,  The  first  step  is  to  calculate  the  concentration  in  moles  then  convert  to  atoms].     From  a  pass  out  on  day  1  we  know  the  following  isotope  abundances:    40K  =  0.0117%  of  total  K    238U  =  99.27%  of  total  U     Their  half-­‐lives  are:    40K  =  1.25  x  109  yrs    238U  =  4.47  x  109  yrs    

You  can  use  the  equation  A=  λN  (lecture  6,  slide  6)  to  calculate  activity.  To  do  this,  you  will  need  to  calculate  both  N  (using  the  given  concentration,  the  density  of  seawater,  and  the  %  of  the  relevant  isotope)  and  λ  (using  the  given  half  live,  converted  into  minutes).    

For  40K:    

Calculate  N  (Keep  in  mind  that  only  0.0117%  of  all  K  in  ocean  is  40K)     0.000117  *  (400mg/1kg)  (1.025kg/L)(1g/1000mg)(1mol/40g)(6.02x1023  atoms/mol)  =   7.22  x  1017  atoms  40K/L    

Calculate  λ  in  min-­‐1:  Start  by  converting  t1/2  to  minutes     t1/2  =  1.25  x  109  years(365  days/year)(24hrs/day)(60min/hr)  =  6.57  x  1014  min    t1/2  =  0.693/λ  (equation  from  lecture  6,  slide  9),  ààλ  =  0.693/t1/2  λ  =  -­‐.693/6.57  x  1014  minutes  =  1.05  x  10-­‐15  min-­‐1      

Substitute  calculated  values  of  N  and  λ  into  equation  for  A:   A  =  λN  =  (1.05  x  10-­‐15  min-­‐1)(7.22  x  1017)  =  762  dpm/L  

Convert  to  Bq/L:    

1110  dpm/L  (1min/60  sec)  =  18.4  dps/L  =  12.7  Bq/L   For  238U:  

 Follow  same  procedure  as  above,  using  values  for  U  instead  of  K    

N  =  7.70  x  1015  atoms/L    λ  =  2.95  x  10-­‐16  min-­‐1   A  =  2.27  dpm/L  =  0.0378  Bq/L      

Each  element  worth  5  pts    Same  mistake  for  both,  then  only  take  off  1  total  through  the  problem    Key  points:    

Page 4: OCN400$Problem$Set$#3Key$$ Winter$2015$Due:$9:30a.m ...1/2#to#minutes# Getting#concentration#to#atoms# Multiplying#by#elemental#abundance# Determining## # b)#In#June#2013#surface#waters#off#the#west#coast#of#North#America#had#measured#cesium

Converting  t1/2  to  minutes  Getting  concentration  to  atoms  Multiplying  by  elemental  abundance  Determining       b)  In  June  2013  surface  waters  off  the  west  coast  of  North  America  had  measured  cesium  isotope  contamination  from  Fukushima.  The  measured  Cs-­‐137  reached  0.0009  Bq/ltr.  How  does  this  relate  to  the  40K  background  radiation?  Should  we  be  alarmed  about  this  radioactivity?  (5)       (0.0009  Bq/L)/12.7  Bq/L  =  0.000071  =  0.0071%  of  background  40K  radiation.  This  is  probably  not  a  big  deal...      3/5  for  correct  qualitative  answer  5/5  for  correct  qualitative  answer  +  calculation  5/5  for  correct  quantitative  answer   3.  Stable  Isotopes  –  delta  notation   The  carbon  isotope  ratio  (13C/12C)  in  a  sample  of  water  is  0.010947.     a.  Calculate  δ13CPDB  for  this  sample.(5)      Given    13C/12C  sample  =  0.010947    13C/12C  PDB  =  0.011237  (lecture  5,  slide  14)    

𝛅 𝐂𝟏𝟑 =

𝑪𝟏𝟑

𝑪𝟏𝟐𝒔𝒂𝒎𝒑𝒍𝒆

𝑪𝟏𝟑

𝑪𝟏𝟐𝑷𝑫𝑩

− 𝟏 ×𝟏𝟎𝟎𝟎  

 

𝛅 𝐂𝟏𝟑 =  𝟎.𝟎𝟏𝟎𝟗𝟒𝟕𝟎.𝟎𝟏𝟏𝟐𝟑𝟕  − 𝟏 ×𝟏𝟎𝟎𝟎  

 𝛅 𝐂𝟏𝟑 = 𝟐𝟓.𝟖𝟎𝟖‰  

   3  pts  identifying  correct  equation  -­‐1  wrong  value  for  std    

Page 5: OCN400$Problem$Set$#3Key$$ Winter$2015$Due:$9:30a.m ...1/2#to#minutes# Getting#concentration#to#atoms# Multiplying#by#elemental#abundance# Determining## # b)#In#June#2013#surface#waters#off#the#west#coast#of#North#America#had#measured#cesium

b.  Was  this  sample  more  likely  coal  or  a  marine  carbonate?  (5)     coal      c.  Explain  why  δ13C  of  atmospheric  CO2  is  growing  more  negative  with  time.  (5)     Burning  of  fossil  fuels  since  the  beginning  of  the  industrial  revolution  –  fossil  fuels  (coal,  petroleum,  natural  gas)  are  created  from  buried  organic  matter,  and  therefore  have  an  carbon  isotopic  composition  similar  to  organic  matter  in  the  modern  environment  (~  -­‐25‰).  This  is  much  lighter  than  average  atmospheric  CO2  (~  -­‐  7‰  

at  the  beginning  of  the  20th  century),  and  is  thus  decreasing  the  δ13C  value  of  atmospheric  CO2  (<-­‐8‰  today).      5  pts:  Input  of  fossil  fuels  is  depleted  carbon  source;  OM  being  burned  is  depleted  as  compared  to  atmosphere     4.  Power  of  stable  Isotopes  –  Mass  Balances  -­‐  Methane  Cycle   We  looked  at  one  version  of  the  global  methane  mass  balance  in  PS  #1.  The  values  of  the  reservoirs  and  fluxes  in  this  problem  are  slightly  different.  In  this  problem  will  use  observations  of  two  carbon  isotopes  to  help  determine  the  major  sources  and  sinks  of  atmospheric  methane.     The  total  burden  of  methane  in  the  atmosphere  is  4680  Teragrams  CH4  (Tg;  1  Tg  =  1012  grams).  This  is  equivalent  to  an  average  tropospheric  atmospheric  concentration  of  1.7  ppm.  Based  on  the  kinetics  of  the  reaction  of  methane  with  OH  radical  (the  major  sink  for  methane  in  the  atmosphere),  the  rate  of  loss  of  methane  from  the  atmosphere  is  520  Tg  CH4/year.     a.  What  is  the  residence  time  (or  atmospheric  lifetime)  of  methane  in  the  atmosphere?  (5)     τ  =  (mass  CH4  in  atmosphere)/(loss  CH4  from  atmosphere)    τ  =  (4680  Tg)/(520  Tg/yr)    τ  =  9  years      3  pts  correct  residence  time  equation  2  pts  correct  values      The  Table  below  gives  information  on  the  isotopic  composition  of  methane  sources,  together  with  the  isotopic  composition  of  methane  consumed  by  reaction  with  OH.  Note  values  for  both  13C  and  14C  (two  isotopes  of  C)  are  given.  The  14C/12C  ratio  (divided  by  the  standard’s  ratio)  is  zero  for  methane  derived  from  fossil  fuel  burning,  since  they  were  formed  millions  of  years  ago  (long  enough  for  all  of  the  14C  to  decay).  Biospheric  sources  all  

Page 6: OCN400$Problem$Set$#3Key$$ Winter$2015$Due:$9:30a.m ...1/2#to#minutes# Getting#concentration#to#atoms# Multiplying#by#elemental#abundance# Determining## # b)#In#June#2013#surface#waters#off#the#west#coast#of#North#America#had#measured#cesium

have  14C/12C  ratios  equal  to  1.0  (i.e.  the  standard  for  14C  is  defined  so  that  the  ratio  of  biospheric  sources  equals  the  standard).  Since  the  residence  time  of  methane  in  the  atmosphere  is  short  compared  to  the  half-­‐life  of  14C/12C  ,  we  may  disregard  radioactive  decay  of  14C/12C  and  use  it  as  we  would  a  stable  isotope.   Let:  W  =  CH4  derived  from  anaerobic  bacteria  in  wetlands,  ruminants,  rice  paddies,  and  termites,  which  are  all  similar  isotopically;  B  =  CH4  formed  during  biomass  burning  F  =  CH4  formed  from  fossil  fuel  sources  (natural  gas  leaks,  coal  mines)    

Source   13C  

14C/12C  ratio  

W   -­‐65‰   1.00   B   -­‐20‰   1.00  

F   -­‐40‰   0.00  

Methane  Loss   -­‐57‰   0.80    The  total  sources  (W+B+F)  add  up  to  520Tg  CH4/year  (with  the  isotopic  signature  equal  to  the  methane  loss  signature)     Assume  CH4  is  in  steady  state  in  the  atmosphere  (i.e.  the  sum  of  sources  =  loss  rate)     b.  write  the  mass  balance  equation  for  CH4  (source  =  loss  =  520Tg  CH4/year)  (5)     W  +  B  +  F  =  Methane  loss  or  W+  B  +  F  =  520Tg/yr      -­‐1  for  missing  source/sink   c.  write  the  mass  balance  equation  for  13CH4  (5)      13C/12CW(W)  +  13C/12CB(B)  +  13C/12CF(F)  =  13C/12CML(ML)  èè Need  to  convert  given  δ13C  values  to  13C/12CW  in  order  to  solve  this  equation.  You  can  plug  in  known  value  of  PDB  to  equation  from  1a,  or  you  can  cancel  out  RPDB  since  it  will  appear  in  every  term  of  the  equation.      

𝛅 𝐂𝟏𝟑 =

𝑪𝟏𝟑

𝑪𝟏𝟐𝒔𝒂𝒎𝒑𝒍𝒆

𝑪𝟏𝟑

𝑪𝟏𝟐𝑷𝑫𝑩

− 𝟏 ×𝟏𝟎𝟎𝟎  

𝑹𝒔𝒂𝒎𝒑𝒍𝒆 =𝑪𝟏𝟑

𝑪𝟏𝟐𝒔𝒂𝒎𝒑𝒍𝒆

=𝛅 𝐂𝟏𝟑

𝟏𝟎𝟎𝟎+ 𝟏𝑪𝟏𝟑

𝑪𝟏𝟐𝑷𝑫𝑩

 

 

Page 7: OCN400$Problem$Set$#3Key$$ Winter$2015$Due:$9:30a.m ...1/2#to#minutes# Getting#concentration#to#atoms# Multiplying#by#elemental#abundance# Determining## # b)#In#June#2013#surface#waters#off#the#west#coast#of#North#America#had#measured#cesium

 𝑪𝟏𝟑

𝑪𝟏𝟐𝑾=

−𝟔𝟓‰𝟏𝟎𝟎𝟎 + 𝟏 𝑪𝟏𝟑

𝑪𝟏𝟐𝑷𝑫𝑩

 

 (13C/12C)W  =  0.935*(13C/12C)PDB    

 

𝑪𝟏𝟑

𝑪𝟏𝟐𝑩=

−𝟐𝟎‰𝟏𝟎𝟎𝟎 + 𝟏 𝑪𝟏𝟑

𝑪𝟏𝟐𝑷𝑫𝑩

 

 (13C/12C)B  =  0.980*(13C/12C)PDB    

 

 

𝑪𝟏𝟑

𝑪𝟏𝟐𝑭=

−𝟒𝟎‰𝟏𝟎𝟎𝟎 + 𝟏 𝑪𝟏𝟑

𝑪𝟏𝟐𝑷𝑫𝑩

 

 (13C/12C)B  =  0.960*  (13C/12C)PDB  

 

 

 

𝑪𝟏𝟑

𝑪𝟏𝟐𝒎𝒆𝒕𝒉𝒂𝒏𝒆  𝒍𝒐𝒔𝒔

=−𝟓𝟕‰𝟏𝟎𝟎𝟎 + 𝟏 𝑪𝟏𝟑

𝑪𝟏𝟐𝑷𝑫𝑩

 

 (13C/12C)methane  loss  =  0.943*  (13C/12C)PDB  

  Plug  these  values  back  into  initial  equation:     0.935*(13C/12CPDB)*W  +  0.980*(13C/12CPDB)*B  +  0.960*(13C/12CPDB)*F  =  0.943*(13C/12CPDB)*ML     Cancel  out  13C/12CPDB  from  each  term:    0.935*W  +  0.980*B  +  0.960*F  =  0.943*520  Tg/yr  =  490.36  Tg/yr      5  for  Mass  balance  equation  can  just  have  the  R  values  –  don’t  necessarily  need  to  calculate  the  fractions.                

Page 8: OCN400$Problem$Set$#3Key$$ Winter$2015$Due:$9:30a.m ...1/2#to#minutes# Getting#concentration#to#atoms# Multiplying#by#elemental#abundance# Determining## # b)#In#June#2013#surface#waters#off#the#west#coast#of#North#America#had#measured#cesium

d.  write  the  mass  balance  equation  for  14CH4  (5)     1*W  +1*B  +0*F  =  0.8*520  Tg/yr    W  +  B  =  416  Tg/yr    Use  R  values  or  solve  for  them      e.  Using  these  three  equations,  you  should  be  able  to  solve  for  the  three  unknowns  (W,  B  and  F).  What  are  their  values?  What  is  the  relative  importance  of  the  fossil  fuel  flux?  (10)      Hint:  First  solve  the  14C  mass  balance  (4d)  for  the  sum  of  W  +  B.  Then  go  to  the  first  equation  (4b)  to  solve  for  F.  Now  you  have  2  equations  and  2  unknowns,  much  easier  to  solve.     From  equation  4d,  you  know  that  W  +  B  =  416  Tg/yr    Substitute  into  equation  4b:    416Tg/yr+  F  =  520  Tg/yr    F  =  520  Tg/yr  –  416  Tg/yr    F=  104  Tg/yr     Solve  equation  4d  for  B  in  terms  of  W:    B=  416  Tg/yr  -­‐  W     Substitute  this  expression  and  your  solution  for  F  into  equation  4d:    0.935*W  +  0.980(416Tg/yr  –  W)  +  0.960*(104  Tg/yr)  =  490.36  Tg/yr     Solve  for  W:    -­‐0.045*W  =  -­‐17.16  W  =  381.33  Tg/yr     Finally,  substitute  this  value  for  W  back  into  equation  4d  and  solve  for  B:   381.33  Tg/yr  +  B  =  416  Tg/yr    B  =    34.67  Tg/yr     To  solve  for  the  relative  importance  of  the  fossil  fuel  flux,  determine  what  percent  of  the  total  atmospheric  CH4  flux  is  from  fossil  fuels:   (104  Tg/yr)/(520  Tg/yr)  =  0.2  =  20%      **Rounding  allows  for  a  fairly  large  spread,  so  just  because  values  differ  doesn’t  mean  math  is  wrong    -­‐Solve  F  -­‐Solve  B  -­‐Solve  W  -­‐Solve  final  calculation