NOVEL BIOACTIVE MILK OLIGOSACCHARIDES IN …milkgenomics.org/wp-content/uploads/2013/09/Barile.pdfA....

1
BACKGROUND RESULTS A. Samples 32 milk samples from genetically distinct goats A/A and O/O at the CSN1S1 locus encoding αs1casein were used for this study. The effects of αs1casein polymorphisms on goat milk composition and quality have been intensively studied (Martin and Leroux, 2000); however the effects on oligosaccharide synthesis, which occurs within the same cellular compartment (Endoplasmic Reticulum) where lipids are synthesized and casein micelles are built, have not been previously investigated. The dataset was spilt into: genotype A/A and genotype O/O at the CSN1S1 locus. For both groups, 8 samples were collected in the morning and 8 were from evening milking. B. Instrumentation NOVEL BIOACTIVE MILK OLIGOSACCHARIDES IN DIFFERENT GOAT GENOTYPES Barile D. 1 , Meyrand M. 1 , Caillat, H. 2 , German B. 1 , Lebrilla C. 3 , Martin P. 4 The authors would like to thank APIS-Gene (a French Scientific Group gathering professional stakeholders) for partly funding this project. Fig. 1. Solidphase extraction Fig. 2. Agilent 6520 series HPLCChip Q TOF (Agilent Technologies, Santa Clara, CA) Fig. 3. The microfluidic Chip consists of an enrichment column and an analytical column, both packed with porous graphitized carbon In this work, the fraction containing mainly the neutral OS was enriched by SPE (Fig. 1) and analyzed by HPLCChip/QTOF MS (Figs. 23), a sensitive and quantitative method for oligosaccharide profiling. Oligosaccharide composition was confirmed by Tandem Mass Spectrometry analysis. 1.5 4’ Martin & Leroux (2000) Le gène caprin spécifiant la caséine αs1 : un suspect tout désigné aux effets aussi multiples qu’inattendus. INRA Prod. Anim., HS2000, 125132. Barile, D., N. Tao, et al. (2009). Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int Dairy J 19(9): 524530. Prior to Mass Spectrometric analysis, oligosaccharides were purified by SolidPhase Extraction (SPE) (Fig. 1) with Graphitized Carbon cartridges following the protocol described previously (Barile et al., 2009). [email protected] [email protected] 1 Foods for Health Institute, Department of Food Science & Technology, University of California, Davis, Davis 95616, CA, USA 2 Institut National de la Recherche Agronomique (INRA), UR 631, Station d’Amélioration Génétique des Animaux (SAGA), 31326 Castanet-Tolosan, France 3 Department of Chemistry, University of California, Davis 95616, USA 4 INRA, UMR Génétique animale et Biologie intégrative (GABI), Equipe « Lait, Génome & Santé » (LGS), 78350 Jouy-en-Josas, France Human milk contains significant quantities of a unique family of complex carbohydrates (oligosaccharides, OS) that are believed to confer unique health benefits to the nursing infants, such as prevention of pathogen colonization, and directly influence the composition of the intestinal microbiota. Mammalian milk OS are commonly divided into two main groups: neutral and acidic. Neutral OS are composed of galactose (Gal), Glucose (Glc) N-Acetylglucosamine (GlcNAc), fucose (Fuc) and a lactose core; acidic OS are characterized by these same monomers but also one molecule of Nacetylneuraminic acid (NeuAc) is found. At present, the only source of milk OS is human milk, which limits OS research and practical applications. Recent studies have documented that these complex OS are present in most mammalian milks, such as goat and bovine milk. However, previous research has failed to identify a genetic influence on specific OS formation, which is crucial in defining oligosaccharide functions. The objectives of this project were: i)use advanced mass spectrometry to perform the most complete characterization of OS in goat milk of extreme genotypes at the CSN1S1 locus (A/A and O/O). ii)provide the proof of principle that goat milk represents a genuine source of complex milk OS suitable as a food ingredient. METHODS CONCLUSION A. Goat milk oligosaccharides profiling The typical Base Peak Chromatogram (BPC) obtained for goat milk OS extraction (neutral fraction) is presented in Fig. 4. No differences between genotypes were observed by visual of the BPC in the 32 samples analyzed. B. Goat milk oligosaccharide Library of compositions validated by Tandem Mass spectrometry The mass lists obtained from the profile were deconvoluted using the Molecular Feature Extractor from Mass Hunter Qualitative Analysis Version B.03.01 (Agilent Technologies) and OS compositions were established using an inhouse program, Glycan Finder, written in Igor Pro version 5.04B (WaveMetrics Inc., Portland, OR). OS compositions were determined using mass error 5 ppm . Compositions were then confirmed by tandem mass spectrometry (fragmentation) that allows the identification of individual constituents of the OS molecules (Table 1). 22 different OS are presented in the table (against). Fucosylated molecules are highlighted in pink, acidic in green, neutral containing Nacethylhexosamine in blue, and the polymer of hexoses (Glc, Gal) in grey. C. Genotypes may influence oligosaccharides composition Oligosaccharides presented similar abundance in all samples, with the same five OS representing the majority of the BPC signal measured (Fig.5). However, a meticulous data analysis enabled us to identify a marker discriminating between genotypes : 3 3 1 1 1 1 2 1 2 1 3 3 4 2 2 1 MW 530.208 The OS composed of: 1 Hexose, 1HexNAc and 1 Fucose (in green) was consistently detected in significant amount in the milk from O/O genotype, whilst it was completely absent from the A/A genotype. Its tandem profile is shown in Fig. 6. This project constitutes the first comprehensive effort to profile and elucidate the structures of milk OS in goat milk and simultaneously study the correlation between OS expression and different genotypes. We demonstrated similarities and differences between genotypes. The complexity of the OS common to both genotypes detailed in the library, make goat milk a genuine source of fucosylated bioactive OS to improve human health. D. New fucosylated oligosaccharides discovered Eight novel OS never reported in the literature have been discovered in the present work; their composition has been confirmed by tandem mass spectrometry. Three of them are fucosylated : a) 1Hex, 1HexNAc, 1Fuc ; b) 4Hex, 2HexNAc, 1Fuc; c) 3Hex, 3HexNAc, 1Fuc (highlighted in pink in Table 1). OS a) and c) seem to be present only in genotype O/O for the CSN1S1 locus. Fig 6.Fragmentation of the OS 1 Hexose, 1HexNAc and 1 Fucose. (Neutral mass 529.201) Fig. 4 Hex HexNAc Fuc NeuAc NeuGc neutral mass abbrev. 1 2 1 488.174 2'FL 2 3 504.169 3GL 3 3 504.169 6GL 4 1 1 1 529.201 5 2 1 545.196 NAL 6 2 1 633.212 6SL 7 2 1 633.212 3SL 8 2 1 649.206 NGL 9 4 666.222 GOS(4) 10 1 1 1 674.238 11 3 1 707.248 NAHL 12 2 2 748.275 DNAL 13 3 1 811.259 SNGHL 14 5 828.275 GOS(5) 15 3 1 1 853.306 16 4 1 869.301 NADHL 17 6 990.327 GOS(6) 18 4 2 1072.381 LNH 19 3 3 1113.407 20 2 4 1154.434 21 4 2 1 1218.438 22 3 3 1 1259.465 Table 1: Library of confirmed goat milk OS. Fig. 5. Extracted ion chromatogram (EIC) of the most abundant OS (genotype O/O). circle, hexose (Hex); square, Nacetylhexosamine (HexNAc); triangle, fucose (Fuc); diamond, sialic acid (NeuAc). H 2 O = 18.010 Fucose = 146.058 Hexose = 162.053 HexNAc = 203.079 Institut National de la Recherche Agronomique Institut National de la Recherche Agronomique

Transcript of NOVEL BIOACTIVE MILK OLIGOSACCHARIDES IN …milkgenomics.org/wp-content/uploads/2013/09/Barile.pdfA....

Page 1: NOVEL BIOACTIVE MILK OLIGOSACCHARIDES IN …milkgenomics.org/wp-content/uploads/2013/09/Barile.pdfA. Samples 32 milk samples from genetically distinct goats A/A and O/O at 11the CSN1S1

BACKGROUND RESULTS

A. Samples32 milk samples from genetically distinct goats A/A and O/O at the CSN1S1 locus encoding αs1‐casein were used for this  study. The effects of αs1‐casein polymorphisms on goat milk composition and quality have been  intensively studied (Martin and Leroux, 2000); however the effects on oligosaccharide synthesis, which occurs within the same cellular compartment (Endoplasmic Reticulum) where lipids are synthesized and casein micelles are built, have not been previously investigated. 

The dataset was spilt into: genotype A/A and genotype O/O at the CSN1S1 locus. For both groups, 8 samples were collected in the morning and 8 were from evening milking.

B. Instrumentation

NOVEL BIOACTIVE MILK OLIGOSACCHARIDES IN DIFFERENT GOAT GENOTYPESBarile D.1, Meyrand M.1, Caillat, H. 2, German B.1, Lebrilla C.3, Martin P.4

The authors would like to thank APIS-Gene (a French Scientific Group gathering professional stakeholders) for partly funding this project.

Fig. 1. Solid‐phase extraction

Fig. 2. Agilent 6520 series HPLC‐Chip Q ‐TOF(Agilent Technologies, Santa Clara, CA)

Fig. 3. The microfluidic Chip consists of an enrichment column and an analytical column, both packed with porous graphitized carbon 

In  this work,  the  fraction containing mainly  the neutral OS was enriched by SPE  (Fig. 1) and analyzed by HPLC‐Chip/Q‐TOF MS  (Figs.  2‐3),  a  sensitive  and  quantitative method  for  oligosaccharide  profiling.  Oligosaccharide composition was confirmed by Tandem Mass Spectrometry analysis.

1.5’

4’

Martin & Leroux (2000) Le gène caprin spécifiant la caséine αs1 : un suspect tout désigné aux effets aussi multiples qu’inattendus. INRA Prod. Anim., HS2000, 125‐132.Barile, D., N. Tao, et al. (2009). Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int Dairy J 19(9): 524‐530.

Prior to Mass Spectrometric analysis, oligosaccharides were  purified  by  Solid‐Phase  Extraction  (SPE)  (Fig.  1)with  Graphitized  Carbon  cartridges  following  the protocol described previously (Barile et al., 2009).

[email protected]@jouy.inra.fr

1 Foods for Health Institute, Department of Food Science & Technology, University of California, Davis, Davis 95616, CA, USA 2 Institut National de la Recherche Agronomique (INRA), UR 631, Station d’Amélioration Génétique des Animaux (SAGA), 31326 Castanet-Tolosan, France3 Department of Chemistry, University of California, Davis 95616, USA4 INRA, UMR Génétique animale et Biologie intégrative (GABI), Equipe « Lait, Génome & Santé » (LGS), 78350 Jouy-en-Josas, France

Human milk contains significant quantities of a unique family of complex carbohydrates (oligosaccharides, OS) that are believed to confer unique health benefits to the nursing infants, such as prevention of pathogen colonization, and directly influence the composition of the intestinal microbiota. Mammalian milk OS are commonly divided into two main groups: neutral and acidic. Neutral OS are composed of galactose (Gal), Glucose (Glc) N-Acetyl‐glucosamine (GlcNAc), fucose (Fuc) and a lactose core; acidic OS are characterized by these same monomers but also one molecule of N‐acetyl‐neuraminic acid (NeuAc) is found. At present, the only source of milk OS is human milk, which limits OS research and practical applications. Recent studies have documented that these complex OS are present in most mammalian milks, such as goat and bovine milk. However, previous research has failed to identify a genetic influence on specific OS formation, which is crucial in defining oligosaccharide functions. 

The objectives of this project were:i)use advanced mass spectrometry to perform the most complete characterization of OS in goat milk of extreme genotypes at the CSN1S1 locus (A/A and O/O).ii)provide the proof of principle that goat milk represents a genuine source of complex milk OS suitable as a food ingredient.

METHODS

CONCLUSION

A. Goat milk oligosaccharides profilingThe  typical  Base  Peak  Chromatogram  (BPC)  obtained  for  goat milk OS  extraction (neutral  fraction)  is  presented  in  Fig. 4. No  differences  between    genotypes were observed by visual of the BPC in the 32 samples analyzed.

B. Goat milk oligosaccharide Library of compositions validated by Tandem Mass spectrometryThe  mass  lists  obtained  from  the  profile  were  deconvoluted using  the Molecular  Feature  Extractor  from Mass Hunter Qualitative Analysis Version B.03.01  (Agilent Technologies)  and OS  compositions were  established using an  in‐house program,  Glycan Finder,  written  in  Igor  Pro  version  5.04B (WaveMetrics Inc.,  Portland,  OR).  OS  compositions were  determined  using mass  error  ≤5  ppm .  Compositions were  then  confirmed  by    tandem mass spectrometry  (fragmentation)  that  allows  the  identification  of  individual constituents of the OS molecules (Table 1).

22 different OS  are presented  in  the  table  (against).  Fucosylated molecules are  highlighted  in  pink,  acidic  in  green,  neutral  containing  N‐acethylhexosamine in blue, and the polymer of hexoses (Glc, Gal) in grey. 

C. Genotypes may influence oligosaccharides compositionOligosaccharides presented  similar abundance  in all  samples, with  the  same five OS representing the majority of the BPC signal measured (Fig.5). However, a  meticulous  data  analysis  enabled  us  to  identify  a  marker  discriminating between genotypes :

3

3

1

1

1

1

2

1

2

1

3

3

4

2

2

1

MW 530.208

The OS composed of: 1 Hexose, 1HexNAc and1 Fucose (in green) was consistently detected in significant amount in the milk from O/O genotype, whilst it was completely absent from the  A/A genotype. Its tandem profile is shown in Fig. 6.

This  project  constitutes  the  first  comprehensive  effort  to  profile  and  elucidate  the  structures  of milk OS  in  goat milk  and  simultaneously  study  the correlation between OS expression and different genotypes. We demonstrated similarities and differences between genotypes. The complexity of the  OS common to both genotypes detailed in the library,  make goat milk a genuine source of fucosylated bioactive OS to improve human health.  

D.  New fucosylated oligosaccharides discoveredEight novel OS never reported in the literature have been discovered in the present work; their composition has been confirmed by tandem mass spectrometry. Three of them are fucosylated :  a) 1Hex, 1HexNAc, 1Fuc ;  b) 4Hex, 2HexNAc, 1Fuc; c) 3Hex, 3HexNAc, 1Fuc (highlighted in pink in Table 1). OS a) and c) seem to be present only in genotype O/O for the CSN1S1 locus.

Fig 6.Fragmentation of the OS 1 Hexose, 1HexNAc and 1 Fucose. (Neutral mass 529.201)

Fig. 4

Hex HexNAc Fuc NeuAc NeuGcneutral mass

abbrev.

1 2 1 488.174 2'FL2 3 504.169 3‐GL3 3 504.169 6‐GL4 1 1 1 529.201 ‐5 2 1 545.196 NAL6 2 1 633.212 6‐SL7 2 1 633.212 3‐SL8 2 1 649.206 NGL9 4 666.222 GOS(4)10 1 1 1 674.238 ‐11 3 1 707.248 NAHL12 2 2 748.275 DNAL13 3 1 811.259 SNGHL14 5 828.275 GOS(5)15 3 1 1 853.306 ‐16 4 1 869.301 NADHL17 6 990.327 GOS(6)18 4 2 1072.381 LNH19 3 3 1113.407 ‐20 2 4 1154.434 ‐21 4 2 1 1218.438 ‐22 3 3 1 1259.465 ‐

Table 1: Library of confirmed goat milk OS.

Fig. 5. Extracted ion chromatogram (EIC) of the most abundant OS (genotype O/O).circle, hexose (Hex); square, N‐acetylhexosamine (HexNAc); triangle, fucose (Fuc); diamond, sialic acid (NeuAc).

H2O= 18.010

Fucose= 146.058Hexose

= 162.053HexNAc= 203.079

Institut National de la Recherche AgronomiqueInstitut National de la Recherche Agronomique